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Abstract

The Cloud-based infrastructure-as-a-service (IaaS)
paradigm (e.g., Amazon EC2) enables a client who
lacks computational resources to outsource her dataset
and data mining tasks to the Cloud. However, as the
Cloud may not be fully trusted, it raises serious con-
cerns about the integrity of the mining results returned
by the Cloud. To this end, in this paper, we provide
a focused study about how to perform integrity verifi-
cation of the k-means clustering task outsourced to an
IaaS provider. We consider the untrusted sloppy IaaS
service provider that intends to return wrong clustering
results by terminating the iterations early to save com-
putational cost. We develop both probabilistic and de-
terministic verification methods to catch the incorrect
clustering result by the service provider. The deter-
ministic method returns 100% integrity guarantee with
cost that is much cheaper than executing k-means clus-
tering locally, while the probabilistic method returns
a probabilistic integrity guarantee with computational
cost even cheaper than the deterministic approach. Our
experimental results show that our verification methods
can effectively and efficiently capture the sloppy service
provider.
Keywords: Data-mining-as-a-service; Cloud comput-
ing; integrity; k-means clustering; Infrastructure as a
Service (IaaS).

1 Introduction

Due to recent advances in network techniques, a new
paradigm so called as “mining and management of data
as service” has become a practical and cost effective so-
lution for providers and consumers, ranging from busi-
ness analytics to scientific computing. Cloud comput-
ing, an emerging trend of provisioning scalable comput-
ing services, provides a natural solution for the data-
mining-as-a-service (DMAS) paradigm. There are a
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few active industry projects (e.g., Google’s Predication
APIs [2]) provide cloud-based data mining as a service.
The paradigm of “mining and management of data as
service” will presumably grow [6].

Although outsourcing of data mining is advanta-
geous for data owners with limited abilities to achieve
sophisticated analysis on their large volumes of data, it
triggers serious security concerns. One possible secu-
rity issue is the integrity of the mining results returned
by a third party service provider that is potentially un-
trusted. There are many possible reasons for the service
provider to cheat on its answers [9]. For instance, the
service provider would like to improve its revenue by
computing with minimal resources while charging for
more. A basic problem is inherent in the outsourcing
computing paradigm: How can a client of weak com-
putational power verify the correctness of the received
result of intensive mining computations, without any
trusted verification service provider?

In the last decade, intensive efforts have been
put on the security issues of the database-as-a-service
(DAS) paradigm [12, 14, 19]. Only until recently some
attention was paid to the security issues of the DMAS
paradigm. However, most of these work only focus
on data confidentiality and pattern privacy [18, 21,
23]. There is surprisingly very little research [24] on
result integrity verification of outsourced data mining
computations in the DMAS paradigm.

In this paper, we focus on k-means clustering,
a popular clustering algorithm used in many appli-
cations. We consider the popular infrastructure-as-
a-service (IaaS) model that most Cloud computing
providers (e.g., Amazon EC2 [1]) offer. In this model,
the client sends both data and the code of the k-means
clustering algorithm to the Cloud, while the Cloud pro-
vides storage and hardware for computation. We con-
sider the sloppy Cloud service providers that may ter-
minate the iterations early to save computational cost,
and thus return incorrect clustering result.

We propose both probabilistic and deterministic ap-
proaches to verify whether the IaaS provider has exe-
cuted the outsourced k-means clustering software faith-



fully and returned correct clustering result. The de-
terministic approach checks whether each tuple t is as-
signed to its nearest cluster centroid. To speed up the
verification procedure, instead of comparing the dis-
tance between t and all cluster centroids, we use the
Voronoi diagram to find a small portion of centroids
whose distance to t needs to be measured and com-
pared for verification. The probabilistic approach is
designed by using synthetic clusters (SCs). The SC-
based approach provides quantifiable correctness guar-
antee to catch a sloppy server. It only needs a small
number of synthetic tuples to catch the clustering re-
sult of small errors with high probability. The deter-
ministic method returns 100% integrity guarantee with
cost much cheaper than executing the k-means cluster-
ing mining locally, while the probabilistic method re-
turns a probabilistic integrity guarantee with computa-
tional cost even cheaper than that of the deterministic
approach. We provide an extensive set of experiments
evaluating the performance of both deterministic and
probabilistic verification approaches, with the simula-
tion of sloppy servers. Our experimental results show
that the time of our verification approaches is only 1.2%
of the mining time at most. To our best knowledge, we
are the first to investigate the problem of verifying the
correctness of outsourced k-means clustering.

2 Preliminaries

2.1 K-means Clustering In this paper, we focus
on k-means clustering, a well-known clustering mining
problem. Briefly speaking, given a set of points D =
{t1, . . . , tn}, where each point is a d-dimensional vector,
k-means clustering partitions D into k groups C =
{C1, . . . , Ck}, by minimizing the within-cluster sum of

square distances SD =
∑k

j=1

∑
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2
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|Cj |
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ti. In

the remainder of the paper, we use cluster and group
interchangeably. Given a tuple ti, let Cj be its cluster
and cj be the centroid of Cj , we say the cluster label
of ti achieves a locally optimal solution if ∄c′j 6= cj s.t.
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2. We say the

clustering label of ti is incorrect if the cluster label of ti
does not achieve the locally optimal solution.

Minimizing the sum of square distances is NP-hard
[17, 3]. Thus we consider Lloyd’s algorithm [16], a
popular k-means clustering algorithm. It starts from
randomly picking k tuples as k initial cluster centroids

C(0) = {c
(0)
1 , . . . , c

(0)
k }, then proceeds by repeating the

following two steps:
1. Assignment: Given the current set of k cluster

centroids C(x) = {c
(x)
1 , . . . , c

(x)
k }, assign each point ti to

the cluster whose center is the closest to ti.
2. Update: Update the points in each cluster, and

compute the new centroids of each cluster, c
(x+1)
j =

1

|C
(x+1)
j

|

∑
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j

ti.

The above two steps are repeated until no tuple
changes its cluster assignment anymore, i.e., the clus-
tering procedure reaches convergence.

2.2 Outsourcing Setup We consider the
infrastructure-as-a-service (IaaS) paradigm. In
this paradigm, the client outsources both data and the
code of Lloyd’s method to the IaaS service provider
(server). The code is executed at the server side.
The server provides storage and hardware for the
computation. A typical IaaS example is Amazon EC2
Web Service [1]. The client configures the value of
k and picks k initial centroids. After executing the
mining, the server returns the clustering labels in the
same order as the tuples were received. The server may
return the centroids to the client too. But the centroids
may not be correct, as the server may terminate the
mining before executing the Update step.

Another possible computing paradigm is the
Software-as-a-service (SaaS) paradigm, in which the
client only outsources data to the server, while the
server runs its own clustering software on the out-
sourced data. We will discuss the challenges and dif-
ficulties of verifying the k-means clustering result by
SaaS providers in Section 5.

2.3 Types of Dishonest Servers In this paper, we
consider the sloppy server that intends to terminate the
iterations before reaching convergence to save compu-
tational cost. We aim at verifying whether there is any
clustering label that does not reach local optimality.

There may exist other type of servers that have
more cheating power and be able to launch more sophis-
ticated attack. For example, it is possible the server
knows the details of verification mechanism and may
try to escape verification by making sure that incorrect
clustering results meet what the verification procedure
aims to validate. We refer to this type of server as the
malicious server. We will discuss possible solutions to
catch such malicious servers in Section 5.

2.4 Overview of Solutions We propose two solu-
tions to verify the correctness.

(1) The deterministic approach verifies whether
each tuple t achieves the local optimal solution with
100% certainty. The brute-force approach computes
the distance between t and each centroid. We propose
the Voronoi diagram based approach that uses the
Voronoi diagram to pick the neighboring centroids of
t for verification. When k > (d + 1)(d + 2)/2 and n >
k(⌈d/2⌉−1) (i.e., large datasets with numerous clusters),
the Voronoi diagram based approach only picks a small



Verification Guarantee Verification Approach Complexity of Verification at Client Side

Deterministic Voronoi-diagram based approach (Sec. 3)
If k > (d+ 1)(d+ 2)/2 and n > k(⌈d/2⌉−1) Otherwise

O(nkd + klogk + k⌈d/2⌉) O(nk)

Probabilistic Synthetic-cluster approach (Sec. 4) O(m)

Table 1: Summary of verification approaches (n: |D|; m: # of artificial tuples; k: number of clusters in D; d: # of
attributes of D; kd: the average number of centroid neighbors in Voronoi diagram).

portion of centroids for verification. Therefore, the
Voronoi diagram based approach is especially suitable
to DMAS paradigm where clustering on big datasets
with large cluster numbers are common.

(2) The probabilistic approach returns a probabilis-
tic correctness guarantee of the returned cluster labels.
We design the synthetic-cluster (SC) based approach
which aims to catch the sloppy server. Under this ap-
proach, the client inserts a set of artificial tuples into the
dataset before outsourcing. The artificial tuples will be
clustered independently from the original dataset and
their labels will be validated for verification. The SC-
based approach only needs a small number of synthetic
tuples to catch a clustering result with few errors with
high integrity probability guarantee.

Table 1 summarizes the two solutions with regard
to their probabilistic guarantee and complexity. The
complexity of both solutions is much cheaper than that
of k-means clustering (O(iknd), where i is the number
of iterations). Furthermore, with probabilistic integrity
guarantees, the SC-based approach has much lower ver-
ification complexity than that of the deterministic ap-
proach. We discuss the details of these two approaches
in Sec. 3 and Sec. 4 respectively.

3 Deterministic Approach

The deterministic approach for verifying that the output
of a server is a local minimum of the k-means criterion,
i.e. for verifying that clustering has converged and all
tuples are assigned to the nearest centroid, comprises
two steps: i) verifying that the returned centroids, if
available, are consistent with the label assignments or
computing the centroids from the labels, and ii) veri-
fying that there is no centroid that is closer to a tuple
than its currently assigned one. These steps correspond
to the steps of the k-means algorithm, since we cannot
know which was the last step performed if the server
terminated early. Performing only one of these tests is
insufficient to conclude that the results are correct. On
the other hand, any inconsistency immediately raises a
red flag and tests can be terminated.

First, we verify whether the returned centroids, if
there is any, are indeed the centroids of the returned
clusters taking the returned labels for granted. The
client computes the centroids (O(n)) and compares
them to those returned by the server. If there is any

Figure 1: An Example of Deterministic Approach

discrepancy, the server was not honest. This step is
also required in case the server only returns labels, but
not the coordinates of the centroids.

Second, we verify that each tuple has been assigned
to the nearest centroid. The brute force version of this
test is O(nk) since the distances from each tuple to
all centroids have to be computed. We propose here a
faster procedure, which is still guaranteed to detect any
discrepancy and requires some pre-processing to signif-
icantly reduce the factor k of the complexity. Specif-
ically, we propose to compute the Voronoi diagram of
the centroids returned by the server, which will be the
input sites of the diagram. The Voronoi diagram sub-
divides the space into regions such that any point in a
region is closer to the input site of that region than any
other input site. Fig. 1 shows an example of the Voronoi
diagram in 2D. Based on the Voronoi diagram, we ver-
ify the clustering label of the tuple marked with the
star in Fig. 1 by using centroids marked with triangles.
The expected complexity for computing the Voronoi di-
agram is O(klogk + k⌈d/2⌉) in high-dimensional spaces
[7, 8]. The dual of the Voronoi diagram is the De-
launay triangulation and its edges connect input sites
that share a Voronoi boundary (are neighboring). We
will use the Delaunay triangulation as a neighborhood
graph which has edges only between neighboring sites
(centroids). The expected number of neighbors of a
site in d dimensions is kd = (d + 1)(d + 2)/2. When
k > (d + 1)(d + 2)/2 and n > k(⌈d/2⌉−1) (i.e., k > kd
and O(n) dominates O(k⌈d/2⌉)), we use the Voronoi di-
agram to pick the neighboring centroids for verification.
Otherwise, we use the brute-force approach and check
all centroids for verification.

Given the neighborhood graph, we will verify the
assignment of each tuple by comparing the distance to
its currently assigned centroid ci and the neighbors of
ci in the graph. Next we show that this test is sufficient
and no other distances have to be computed. Assume



that a tuple t has been assigned to an incorrect centroid
cf . This means that the segment from t to cf crosses one
of the boundaries of the Voronoi diagram neighboring
cf . (If the segment does not cross a boundary, then the
assignment is correct.) The centroid of the boundary
that was crossed, denoted by cc, is nearer to t than cf
is to t and the algorithm detects this discrepancy. Note
that cc does not have to be the correct centroid for t.

In summary, if k > (d + 1)(d + 2)/2 and n >
k(⌈d/2⌉−1), the complexity of validating the local op-
timality is O(nkd) since centroids have on average kd
neighbors that have to be tested, and the total complex-
ity of verification at the client side is O(nkd + klogk +
k⌈d/2⌉). Otherwise, the total complexity of verification
at the client side is O(nk).

4 Probabilistic Approach

The key to the synthetic-cluster (SC) verification ap-
proach is to generate a set of artificial tuples AT that
is well-separated from D so that AT will not influence
the clusters of D. The client will send D ∪ AT to the
server as a single dataset, and require (k + w)-means
clustering, where k and w are the number of clusters
of D and AT . The clustering answer by the server will
be verified by the client as verifying the correctness of
clustering on AT . Compared with the deterministic ap-
proach, an advantage of the SC-based approach is that
the verification requires neither centroid computation
nor searching for closest centroids. Therefore, the SC-
based approach is much faster than the deterministic
approach. Although inserting AT into D will increase
the mining overhead at the server side, we will show
later in this section and Section 6 that the overhead is
small, since it does not need large numbers of artificial
tuples to achieve high probabilistic guarantee. We note
that AT can be normalized in the same way as D.

We formalize our verification goal first. Given a
set of data points D, let L be the clustering labels
of D after it reaches local optimal solution, and Ls

be the labels returned by the server, the precision of

Ls is defined as R = |L∩Ls|
|Ls|

(i.e., the percentage

of returned cluster labels that are correct). We aim
at designing verification techniques that can provide
(α, β)-correctness. Formally, given the clustering labels
Ls returned by the server, we say a verification method
M can verify (α, β)-correctness of Ls if the probability
P to catch the server that returns Ls of precision R = β
satisfies that P ≥ α, where α, β ∈ [0, 1] are user-
specified.

We assume that the sloppy server cannot distin-
guish original tuples from artificial ones and therefore
will return wrong labels of both types of tuples with
equal probability. Given a dataset D with β percent-

age of correct cluster labels, where β is the correctness
ratio threshold given in the (α, β)-correctness require-
ment, if there is any artificial tuple whose clustering
label is wrong, the sloppy server will be caught with
100% certainty. Otherwise, the probability P of catch-
ing the wrong clustering label of at least one real tuple
is P = 1− pm, where p is the probability that the clus-
ter label of a real tuple t is correct. Given the precision
threshold β, the probability p that the cluster label of
any real tuple is correct satisfies is p = β. Therefore, the
probability P of catching a sloppy server with m artifi-
cial tuples is P = 1 − βm. To satisfy (α, β)-correctness
requirement, it is easy to infer that m ≥ ⌈logβ(1− α)⌉.
Our analysis shows that to catch a server that changes
a small fraction of cluster labels with high correctness
probability does not need large number of artificial tu-
ples. For instance, when β = 0.95 (i.e., 5% of cluster
labels are wrong) and α = 0.95, m = 58. Note that
the number of artificial tuples is independent from the
size of the original dataset. This is advantageous as the
SC-based approach can be used for efficient verification
of clustering of large datasets.

To catch a server that may terminate the execution
early, a straightforward solution is to construct artifi-
cial tuples whose number of iterations for clustering is
guaranteed to be no fewer than that ofD. In general, es-
timating the number of iterations by k-means clustering
is challenging; it is largely dependent on the data and
how initial centroids are chosen for clustering. [5, 13, 22]
provide the theoretical upperbound of the number of
iterations of the k-means algorithm. However, the up-
perbound may be too loose in practice; using the the-
oretical upperbound of the number of iterations of D
may introduce tremendous amounts of artificial tuples
for verification. Therefore, we aim at constructing arti-
ficial tuples whose number of iterations to reach conver-
gence is guaranteed to be no less than a given thresh-
old θ, where θ can be specified according to the client’s
outsourcing budget. One possible way is to compute
θ = by

x , where b is the client’s verification budget (in
monetary format), x is the hourly cost of using server’s
resources (as Amazon’s pricing model allows), and y is
the number of iterations that can be finished within an
hour.

Thus AT should meet two requirements: (1) AT
is well separated from the original dataset D, so that
artificial and true tuples are clustered independently
(i.e., never appear in the same cluster), and (2) the
number of iterations on AT to achieve convergence
is no less than a given threshold θ. Our algorithm
consists of two steps: (1) construct a set of synthetic
clusters SC1, . . . , SCw that require θ iterations to reach
convergence, and (2) move SC1, . . . , SCw away from D



so that they are well-separated. The pseudo code of our
algorithm can be found in our full paper [15]. Next, we
explain the details of the two steps.
Step 1: Construct θ-iteration Clusters. To con-
struct artificial tuples whose number of iterations to
reach convergence is guaranteed to be no less than a
given threshold θ, we adapt the gadget-based approach
in [22] to our setting. Intuitively, we construct a se-
quence of gadgets G0, . . . , Gt−1. The leaf gadget G0

consists of only one point F (of constant weight wF ),
and one center P0. Each gadget Gi (i > 0) consists
of six points {Pi, Ai, Bi, Ci, Di, Ei}, with each point as-
signed a constant weight. The weights of each point
specify the frequency of the point in the dataset. The
rule is that t gadgets will build an instance with 2t+ 1
clusters, on which the k-means clustering will run 4t+3
iterations (the proof is similar as in [22]). Given the
required threshold θ of number of iterations, it requires
m = 325[ θ−3

4 ] + 50 artificial tuples that are grouped

into w = 2[ θ−3
4 ] + 1 clusters. More details of the gad-

get construction can be found in the full version of this
paper [15]. We note that the real and artificial tuples
may converge at different speeds. However, our AT ap-
proach always requires θ iterations on artificial tuples
to reach convergence, and thus θ iterations on real tu-
ples, no matter whether they have reached convergence
before that or not.
Step 2: Make Clusters Well-Separated. Intu-
itively, clustering of two sets of tuples that are far
away will not influence each other. We observe that,
given two datasets D and D′, if ∀t ∈ D and t′ ∈ D′,
dist(t, t′) ≥ max(MaxDis(D),MaxDis(D′)), where
MaxDis(D) is the largest distance between any pair of
tuples of D, then t and t′ will never belong to the same
cluster. The proof can be found in the full version of
this paper [15]. A challenge is that computing the pair-
wise distances of D can be prohibitive for large datasets
(O(n2)). Therefore, we relax the lower bound of the
distance between artificial tuples and the true dataset
as the possible maximum pairwise distance. Before we
explain the details, we define some notations. Given a
d-dimension dataset D, we consider it as a d-hypercube
H, in which the edge on the i-th dimension of H corre-
sponds to the i-th attribute of D. We define a corner
c of H as a tuple t(v1, . . . , vd) such that ∀i(1 ≤ i ≤ d),
vi is either the minimum or the maximum value of the
attribute Ai of D. We define the hyper diagonal of D
as the longest edge between any two corners of H. It is
straightforward that the length of the hyper diagonal of
H is always no less than the maximum pairwise distance
of D. Therefore, we use the length of hyper diagonal of
D to construct synthetic clusters that are well-separated
from D. In particular, given a d-dimension dataset D
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Figure 2: Construction of Synthetic Clusters

and its d-hypercubeH, first, we compute the length h of
the hyper diagonal of H. Second, for each attribute Ai,
we expand its corresponding dimension in H by chang-
ing its maximum value maxi and minimum value mini

to be maxi = maxi + h + δ and mini = mini − h − δ,
where δ can be any positive number. Let the expanded
hypercube be H ′. Third, we move the synthetic clus-
ters SC1, . . . , SCw constructed by Step 1 to be outside
of H ′. Figure 2 illustrates the construction procedure
of well-separated SCs.
Maintenance of Cluster Labels of ATs. There
should exist a mechanism that helps the client find the
cluster labels of the ATs efficiently. One solution is that
the client maintains a copy of ATs and their clustering
labels locally. For those clients who cannot afford such
storage overhead (e.g., those who use mobile devices
to access Cloud and retrieve the clustering result), we
allow them to attach the cluster membership to ATs
when outsourcing, and recover the cluster membership
after they receive the clustering result. In particular,
before the client outsources her dataset, she assigns
each tuple t (including original and artificial ones) a
unique signature Sigt = Enc(s), where Enc is an
encryption function, s is a bit vector of length (⌊log2(n+
m)⌋+ ⌊log2(w)⌋) (n and m: the number of original and
artificial tuples; w: the number of synthetic clusters).
The first ⌊log2(n+m)⌋ bits store the tuple ID, and the
rest ⌊log2(w)⌋ bits store the cluster IDs. All original
tuples are assigned the cluster ID 0, while each AC is
assigned a unique cluster ID in [1, w]. The client will
send the (encrypted) signatures together with data to
the server. We assume that the server cannot decrypt
the signatures. The server has to return the signatures
with the clustering labels back to the client. The
signatures will be decrypted by the client to retrieve the
expected clustering memberships of artificial tuples. By
using the signatures, the space overhead at the client
side is negligible, as the auxiliary information that is
stored at the client side is only the decryption keys
that are used to decrypt the signature and thus recover
cluster membership.
Complexity analysis. At the client side, the complex-
ity of constructing artificial tuples is O(n + m), where



n and m are the numbers of original and artificial tu-
ples. The complexity of verification is O(m), as it only
involves checking the clustering label of each artificial
tuple.

At the server side, the complexity of running Lloyd’s
method on the outsourced dataset (including artificial
tuples) is O(i(k+w)(n+m)d), where i is the number of
iterations, k and w are the number of true and synthetic
clusters, and d is the number of dimensions. As m
is always much smaller than n, the main reason for
possible additional overhead, if there is any, is that θ,
the number of iterations of clustering on SC, is larger
than the number of iterations of D. However, since
θ is decided by the client’s outsourcing budget, such
overhead should be affordable by the client.

5 More Outsourcing Settings

5.1 Server with More Cheating Power Unfortu-
nately, the SC-based approach cannot catch a malicious
server that may obtain more cheating power (e.g., has
the knowledge of the verification mechanism) and em-
ploy computationally inexpensive attacks to defeat the
SC-based verification approach. For example, if the
server is aware that the artificial clusters and D should
be well-separated, it can seek any data segmentation
methods, e.g., the max-margin clustering algorithm [11],
to separate D and AT .

A possible solution to catch the malicious service
provider is sampling-based verification. The sampling-
based approach does not insert any artificial tuple into
the dataset. Instead, the client will pick a set of sample
tuples from D, and verify whether the clusters of these
samples achieve locally optimal solution. Similar to
the SC-based approach, the sampling-based approach
will only return a probabilistic correctness guarantee.
The challenge is how to pick the appropriate sample
tuples. Picking sample tuples of specific properties,
e.g., that are more likely to meet convergence in later
iterations, can increase the probability of catching the
incorrect labels that are produced by early termination
of iterations. On the other hand, picking sample
tuples of specific properties may enable the malicious
server to escape from verification, if it knows the
details of the verification mechanism. For instance,
if it knows that the verification mechanism will pick
tuples that are more likely to meet convergence in later
iterations, it will ensure the clustering labels of these
tuples are correct, while changing the clustering labels
of other tuples on purpose. We claim that random
sampling can catch such malicious server effectively. In
particular, the client randomly picks sampling tuples
and verifies whether these tuples are clustered correctly.
If any sample fails the verification, the server is caught

with 100% certainty. Otherwise, the probability P of
catching a cheating server by choosing l sample tuples
S is P = 1 − βl. To satisfy (α, β)-correctness, the
number of sample tuples l must satisfy l ≥ logβ(1− α).

5.2 Handling Software-as-a-service (SaaS)
Model In the software-as-a-service (SaaS) outsourc-
ing paradigm, the client only outsources data to the
server, while the server provides its own clustering
software, storage, and hardware for the mining. The
challenge of verifying the correctness of k-means
clustering in the SaaS paradigm is that the clustering
results rely on a number of factors, e.g., how the
initial centroids are picked, how the distance function
is defined, and whether data is normalized. It is quite
challenging to verify whether the server has executed
the clustering faithfully without knowing the details
of how the server implemented the k-means clustering
algorithm. Besides, as k-means is an NP-complete
problem, there may exist multiple locally optimal
solutions. In this case, simply checking whether the
labels computed by the client match those returned
by the server (as the SC-based approach does) can-
not determine whether the server’s result is correct.
Therefore, for the SaaS paradigm, the client can verify
the local optimality by running one more iteration on
the cluster labels, if the server is willing to reveal the
implementation details of the mining software, e.g.,
how the distance function is defined.

5.3 Other Centroid-based Clustering Algo-
rithms The major difference between other centroid-
based algorithms such as k-medoids and k-medians al-
gorithms from the k-means algorithm is how the cen-
ters of clusters are computed in each iteration. We
claim that our deterministic approach is still valid to
catch incorrect k-medoids and k-mean clustering result,
by running an additional iteration and constructing a
Voronoi diagram of returned centroids. On the other
hand, our probabilistic approach needs to be adapted
to other centroid-based clustering algorithms. But the
design philosophy should be the same: we insert a num-
ber of artificial tuples that satisfy two conditions: (1)
the artificial tuples are well-separated from the real tu-
ples so that they will not be partitioned into the same
clusters of real tuples, and (2) it requires θ iterations
to reach convergence on the artificial tuples (and thus θ
iterations on the real tuples).

6 Experiments

In this section, we simulate the sloppy server, and report
the overhead of space and performance of the three
verification approaches. We implemented the three
approaches in Java, and conducted an extensive set
of experiments to measure both the space and time



overhead of the verification. We also measured the
mining overhead at the server side.
Experiment Environment. All of our experiments
are evaluated on a desktop PC with a 2.4GHz Intel
Core 2 Quad Q6600 CPU and 3GB RAM running
Windows XP. For each experiment that measured the
time performance, we ran 5 times and took the average.
We pick θ heuristically based on the estimation of
number of iterations. We use qhull software package1

for the computation of Voronoi diagram.
Datasets. We used three real datasets, including the
USPS Handwritten Digits datasetthe Letter recogni-
tion dataset from UCI repository, and a part of a large
3D point cloud acquired using range sensors from Ot-
tawa, Canada. The Ottawa dataset consists of 973547
tuples. We created five datasets from Ottawa dataset
by picking 100K, 200K, 300K, 4000K, and 500K tu-
ples randomly. We also use a synthetic dataset called
Time series (TS) dataset. The details of the datasets
can be found in our full paper [15].
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Figure 3: Detection prob. of SC-based approach

6.1 Robustness of Probabilistic Approach We
measure the robustness of our SC-based approach by
studying the probability that a sloppy server can be
caught by using artificial tuples. We use the USPS
dataset and vary β value, i.e., the correctness ratio
threshold, to control the amount of mistakes that the
server can make on the cluster labels. For each β
value, we randomly modify 1 − β percent of cluster
labels (including both true and artificial ones) so that
they do not achieve local optimal solution. Then
with various α values, we construct artificial tuples to
satisfy (α, β)-correctness. We verify the cluster labels
and record whenever there is a label of an artificial
tuple that is not correct (i.e., the server is caught).
We repeat this experiment 20,000 times and record
the percentage of trials (as detection probability) that
the server is caught. Figure 3 plots the probability
for α ∈ [0.5, 0.9] and β ∈ [0.5, 0.95]. It shows that
the detection probability is always higher than α, the
required correctness guarantee threshold. This proves
the robustness of our SC-based approach.

1http://www.qhull.org/

6.2 Overhead of Verification Preparation at
Client Side In this section, we measure the time and
space overhead of verification preparation of the SC-
based approach. We do not measure such overhead
for the deterministic approach as it does not need any
verification preparation at the client side.

First, we measure the space overhead introduced by
adding artificial tuples and signatures. The overhead is

quantified as o = (|D′|−|D|)
|D| , where D and D′ are the

datasets before and after inserting artificial tuples. We
vary the α value from 0.5 to 0.9, and observe that the
space overhead is always very small. For the TS dataset
that is small, the overhead is around 1.6%, while for
the USPS dataset that is large, it never exceeds 1%
even with larger α values. Second, we measure the time
of constructing ATs for the SC-based approach. Our
observation is that the time is always small (no more
than 12 seconds), even for large α value. We omit the
results due to space limit.
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Figure 4: Verification time at client side (Ottawa dataset,

α, β = 0.9)

6.3 Deterministic Approach Versus Probabilis-
tic Approach We measure and compare the verifica-
tion time at the client side of both deterministic and
probabilistic verification approaches. For the determin-
istic verification, we measure the verification time of
brute-force and Voronoi diagram approaches, while for
the probabilistic verification, we measure the verifica-
tion time of the SC-based approach. Figure 4 (a) and
(b) show the result when we vary the value of k for
a fixed dataset, and vary the size of the dataset for a
fixed value of k, respectively. We observe that, first, the
SC-based approach has much less verification overhead
than that of both deterministic verification approaches.
This is not surprising as the probabilistic approach only
can deliver probabilistic guarantees. Second, the veri-
fication time of the SC-based approach stays the same
when either k or the size of dataset grows. This is be-
cause the number of artificial tuples that are verified
by the SC-based approach only relies on α and β, not
k or the database size. On the other hand, the ver-
ification time of both deterministic approaches grows



with increasing dataset size, as they need to traverse
the dataset at least once. In particular, the verification
time of the brute-force approach increases much faster
than the Voronoi diagram approach. Third our Voronoi
approach is much faster than the brute-force approach
(60% - 80% savings); the speedup is more significant
with larger k. Therefore the Voronoi diagram approach
is preferred when k is large. Similar results are ob-
served when increasing the dataset size (Figure 4 (b)).
Our Voronoi diagram approach is superior to the brute-
force approach with at least 50% savings; these savings
increase when the dataset size grows. We also use letter
dataset (d = 10) and compare the time performance of
both brute-force and Voronoi diagram approach. Our
experiments show that the Voronoi diagram approach
loses to the brute-force approach as its size (n = 20K)
does not satisfy that n > k(⌈d/2⌉)−1) (k = 50). This
follows our complexity analysis in Sec. 3.

6.4 Mining Overhead at the Server Side We also
measure the additional overhead that is incurred at the
server side due to verification. We only measure the
overhead by the SC-based approach as the deterministic
approach does not change the database size and thus
mining time. We define the overhead as T ′−T

T , where T
and T ′ are the mining time before and after inserting
artificial tuples. Figure 5 reports the overhead at the
server side for the SC-based approach on USPS dataset,
with various k values. We notice that for the same α, the
mining overhead increases with k, since larger k values
will slow the mining process. The mining overhead
also increases with larger α values, as there are more
artificial tuples to be inserted. However, the overhead
is always very small; it is always less than 9%.
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6.5 Outsourcing Versus Mining Locally We
compare the time performance of outsourcing mining
while executing verification locally with that of mining
locally. We measure the ratio r = T ′/T , where T ′ is the
time of outsourcing mining while executing verification
locally, including the total time of verification prepara-
tion (if there is any) and verification, and T is the time
of executing k-means locally. Figure 6 (a) and (b) show
the result when we vary k value and dataset size respec-
tively. It shows that our verification approaches only
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takes at most 1.2% time of mining locally. This proves
that it is possible that the client of weak computational
power can outsource expensive data mining computa-
tions to third-party service providers, while verifying
the correctness of the mining result with high integrity
guarantee and cost that is much cheaper than mining
by herself.

7 Related Work

The issue of providing verification assurance for out-
sourced database management was initially raised in
the database-as-a-service (DAS) paradigm [12]. The
goal is to assure the correctness and completeness of
SQL query evaluation over the outsourced databases.
The proposed solutions include Merkle hash trees [14],
signatures on a chain of paired tuples [19], and coun-
terfeit records [25] for SQL point and range queries.
These techniques cannot be used directly in the data-
mining-as-a-service (DMAS) system for verification of
data mining results.

The problem of protecting the data confidentiality
and pattern privacy has caught some attention recently
[18, 21, 23]. The main solution is to use encryption tech-
niques (possible with artificial records added) on the
outsourced dataset so that even with some adversary
background knowledge, the attacker’s probability of de-
crypting the encrypted dataset (and thus the patterns)
is always no less than a given threshold.

On the other hand, enforcing result integrity, an-
other security issue of the DMAS paradigm, has been
rarely studied. Wong et al. [24] propose the verifica-
tion techniques for outsourcing of frequent itemset min-
ing. They generate an artificial database such that all
itemsets in the database are guaranteed to be frequent
and their exact support counts are known. By hosting
the artificial database with the original one and check-
ing whether the server has returned all artificial item-
sets, the data owner can verify whether the server has
returned correct and complete frequent itemsets. To
our best knowledge, Wong et al. [24] are the first (and
the only) authors that address the verification issue of
the outsourced data mining computations. However,



their techniques on frequent itemset mining cannot be
directly applied to k-means clustering.

There is a line of work on verifiable computations
by using interactive proofs [10] and probabilistically
checkable proofs (PCPs) [4, 9]. Unfortunately, this
body of theory is impractical [20], due to the complexity
of the algorithms and difficulty to use general-purpose
cryptographic techniques for data mining problems.

8 Conclusion

In this paper, we investigated how to provide integrity
guarantee for k-means clustering that is outsourced to
infrastructure-as-a-service (IaaS) providers. We con-
sidered the service provider that may return cheap and
incorrect clustering result by terminating the mining
early. Along this line, we developed both deterministic
and probabilistic integrity verification techniques that
can provide high correctness guarantees with complex-
ity much cheaper than that of k-means clustering. As
demonstrated in the experiments, our verification meth-
ods can effectively and efficiently capture the sloppy ser-
vice provider.

Regarding the future work, an interesting research
direction is to adapt our verification techniques to other
clustering methods, e.g., k-medoids clustering method.
It is also interesting to explore how to define a budget-
driven model to allow the client to specify her verifi-
cation needs in terms of budget (possibly in monetary
format) besides the (α, β)-correctness requirement.
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