CS 677: Parallel Programming for Many-core Processors
Lecture 10

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu
Deliverable

• Next Wednesday: project status updates in class
 – Describe CPU version and naïve GPU version
 – Issues
 – Proposed solutions
Outline

• Asynchronous Memory Transfer
• CUDA Streams
• CUDA Libraries
Pinned Memory

• *Page-locked* or *pinned* memory transfers attain the highest bandwidth between host and device
 – Ensures that host buffer does not get moved to virtual memory
• Allocated using the `cudaMallocHost()`
• Pinned memory should not be overused
 – Excessive use can reduce overall system performance
 – How much is too much is difficult to tell in advance
Asynchronous Transfers and Overlapping Transfers with Computation

• Data transfers between host and device using `cudaMemcpy()` are blocking transfers
 – Control is returned to the host thread only after the data transfer is complete.

• The `cudaMemcpyAsync()` function is a nonblocking variant of `cudaMemcpy()`
 – Unlike `cudaMemcpy()` the asynchronous transfer version requires pinned host memory
Asynchronous Transfers and Overlapping Transfers with Computation

cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, stream);
kernel<<<grid, block>>>(a_d);
cpuFunction();

- Memory transfer and device execution are performed in parallel with host execution
- Last argument of `cudaMemcpyAsync()` specifies stream
 - 0 is the default - only nonzero streams are asynchronous (more details soon)
 - Kernel does not begin execution until memory transfer is complete
CUDA Streams

Patrick Cozzi
University of Pennsylvania
CIS 565 - Spring 2011

Steve Rennich
NVIDIA
Streams

- **Stream**: Sequence of commands that execute in order
- Streams may execute their commands out-of-order or concurrently with respect to other streams

<table>
<thead>
<tr>
<th>Stream A</th>
<th>Stream B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command 0</td>
<td>Command 0</td>
</tr>
<tr>
<td>Command 1</td>
<td>Command 1</td>
</tr>
<tr>
<td>Command 2</td>
<td>Command 2</td>
</tr>
</tbody>
</table>
Streams

Is this a possible order?
Streams

Is this a possible order?

Stream A	Stream B	Time
Command 0 | Command 0 | Command 0
Command 1 | Command 1 | Command 0
Command 2 | Command 2 | Command 0

Command 1

Command 2

Command 2
Streams

Is this a possible order?
Streams

- Is this a possible order?

Stream \(A\):
- Command 0
- Command 1
- Command 2

Stream \(B\):
- Command 0
- Command 1
- Command 2

Time:
- Command 0
- Command 1
- Command 2
Streams

• In CUDA, what commands go in a stream?
 – Kernel launches
 – Host ↔ device memory transfers
Streams on Fermi

• Architecture supports:
 – Up to 16 CUDA kernels on GPU
 – 2 cudaMemcpyAsync (must be in different directions)
 – Computation on the CPU
Amount of Concurrency

cudaMemcpyAsync(H2D) Kernel <<< >>> cudaMemcpyAsync(D2H)

cudaMemcpyAsync(H2D) K1 DH1
 K2 DH2
 K3 DH3
 K4 DH4

HD1 K1 DH1
 HD2 K2 DH2
 HD3 K3 DH3
 HD4 K4 DH4

HD1 K1 DH1
 HD2 K2 DH2
 HD3 K3 DH3
 K4 on CPU
Default Stream (Stream ‘0’)

- Stream used when no stream is specified
- Completely synchronous w.r.t. host and device
 - As if cudaDeviceSynchronize() inserted before and after every CUDA operation
- Exceptions - asynchronous w.r.t. host
 - Kernel launches in the default stream
 - cudaMemcpy*Async
 - cudaMemcpy*Async
 - cudaMemcpy within the same device
 - H2D cudaMemcpy of 64kB or less
Requirements for Concurrency

• CUDA operations must be in different, non-0, streams
• cudaMemcpyAsync with host from 'pinned' memory
 – Page-locked memory
 – Allocated using cudaMemcpyHost() or cudaMemcpyHostAlloc() (*)
• Sufficient resources must be available
 – cudaMemcpyAsyncs in different directions
 – Device resources (SMEM, registers, blocks, etc.)

* Both commands are roughly equivalent, but not in all versions of CUDA
Streams

- **Code Example**
 1. Create two streams
 2. Each stream:
 1. Copy page-locked memory to device
 2. Launch kernel
 3. Copy memory back to host
 3. Destroy streams
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
{
 cudaStreamCreate(&stream[i]);
}

float *hostPtr;
cudaMallocHost(&hostPtr, 2 * size);
Stream Example (Step 1 of 3)

cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
{
 cudaStreamCreate(&stream[i]);
}

float *hostPtr;

cudaMallocHost(&hostPtr, 2 * size);

Allocate two buffers in page-locked memory
Stream Example (Step 2 of 3)

```c
for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(/* ... */,
                     cudaMemcpyHostToDevice, stream[i]);
    kernel<<<100, 512, 0, stream[i]>>>(/* ... */);
    cudaMemcpyAsync(/* ... */,
                     cudaMemcpyDeviceToHost, stream[i]);
}
```

Commands are assigned to, and executed by streams
Stream Example (Step 3 of 3)

```c
for (int i = 0; i < 2; ++i)
{
    // Blocks until commands complete
cudaStreamDestroy(stream[i]);
}
```
Streams

• Assume compute capability 1.1 and above:
 – Overlap of data transfer and kernel execution
 – Concurrent kernel execution
 – Concurrent data transfer

• How can the streams overlap?
Streams

• Can we have more overlap than this?
Streams

• Can we have this?
Streams

• *Implicit Synchronization*
 – An operation that requires a dependency check to see if a kernel finished executing:
 • *Blocks* all kernel launches *from any stream* until the checked kernel is finished

• `cudaStreamQuery()` can be used to test if a stream has completed all operations

See 3.2.6.5.3 in the NVIDIA CUDA C Programming Guide for all limitations (version 3.2)
Implicit Synchronization

• These operations implicitly synchronize all other CUDA operations
 – Page-locked memory allocation
 • cudaMallocHost
 • cudaHostAlloc
 – Device memory allocation
 • cudaMalloc
 – Non-Async version of memory operations
 • cudaMemcpy* (no Async suffix)
 • cudaMemcpy* (no Async suffix)
 – Change to L1/shared memory configuration
 • cudaMemcpy* (no Async suffix)
Streams

• Can we have this?

Stream A
- Host → device memory
- Kernel execution
- Device → to host memory

Stream B
- Host → device memory
- Kernel execution
- Device → to host memory

Dependent on kernel completion
Blocked until kernel from Stream A completes
Streams

• Performance Advice
 – Issue all independent commands before dependent ones
 – Delay synchronization (implicit or explicit) as long as possible
for (int i = 0; i < 2; ++i)
{
 cudaMemcpyAsync(/* ... */ , stream[i]);
 kernel<<< /*... */ stream[i]>>>();
 cudaMemcpyAsync(/* ... */ , stream[i]);
}
Streams

for (int i = 0; i < 2; ++i) // to device
 cudaMemcpyAsync(/* ... */ , stream[i]);

for (int i = 0; i < 2; ++i)
 kernel<<< /*... */ stream[i]>>>()

for (int i = 0; i < 2; ++i) // to host
 cudaMemcpyAsync(/* ... */ , stream[i]);
Explicit Synchronization

- `cudaDeviceSynchronize()`
 - Blocks until commands in all streams finish
 - `cudaTreadSyncrhonize()` has been deprecated
- `cudaStreamSynchronize(streamid)`
 - Blocks until commands in a specific stream finish
Synchronization using Events

• Create specific 'Events', within streams, to use for synchronization
 • cudaEventRecord (event, streamid)
 • cudaEventSynchronize (event)
 • cudaStreamWaitEvent (stream, event)
 • cudaEventQuery (event)
Explicit Synchronization Example

{
 cudaEvent_t event;
 cudaEventCreate (&event); // create event

 // 1) H2D copy of new input
 cudaMemcpyAsync (d_in, in, size, H2D, stream1);
 cudaEventRecord (event, stream1); // record event

 // 2) D2H copy of previous result
 cudaMemcpyAsync (d_out, out, size, D2H, stream2);
 cudaMemcpyAsync (out, d_out, size, H2D, stream1);
 cudaStreamWaitEvent (stream2, event); // wait for event in stream1

 kernel <<< , , , stream2 >>> (d_in, d_out); // 3) must wait for 1 and 2
 asynchronousCPUmethod (...);
}

Stream Scheduling

• Fermi hardware has 3 queues
 – 1 Compute Engine queue
 – 2 Copy Engine queues - one for H2D and one for D2H

• CUDA operations are dispatched to HW in the sequence they were issued
 – Placed in the relevant queue
 – Stream dependencies between engine queues are maintained, but lost within an engine queue

• A CUDA operation is dispatched from the engine queue if:
 – Preceding calls in the same stream have completed,
 – Preceding calls in the same queue have been dispatched, and
 – Resources are available

• CUDA kernels may be executed concurrently if they are in different streams
 – Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels have been scheduled and there still are SM resources available

• Note that a blocked operation blocks all other operations in the queue, even in other streams
Example - Blocked Queue

• Two streams, stream 1 is issued first
 – Stream 1 : HDa1, HDb1, K1, DH1 (issued first)
 – Stream 2 : DH2 (completely independent of stream 1)
Example - Blocked Queue

- Two streams, stream 1 is issued first
 - Stream 1: HDa1, HDb1, K1, DH1
 - Stream 2: DH2 (issued first)
Example - Blocked Kernel

- Two streams - just issuing CUDA kernels
 - Stream 1 : Ka1, Kb1
 - Stream 2 : Ka2, Kb2
 - Kernels are similar size, fill $\frac{1}{2}$ of the SM resources
Example - Optimal Concurrency can Depend on Kernel Execution Time

- Two streams - just issuing CUDA kernels - but kernels are different 'sizes'
 - Stream 1: Ka1 {2}, Kb1 {1}
 - Stream 2: Kc2 {1}, Kd2 {2}
 - Kernels fill ½ of the SM resources
Additional Details

- It is difficult to get more than 4 kernels to run concurrently.
- Concurrency can be disabled with environment variable `CUDA_LAUNCH_BLOCKING`.
- Kernels using more than 8 textures cannot run concurrently.
- To run concurrently, CUDA operations must have no more than 62 intervening CUDA operations.
 - That is, in 'issue order' they must not be separated by more than 62 other issues.
 - Further operations are serialized.
- `cudaEvent_t` is useful for timing, but for performance use `cudaEventCreateWithFlags`.
 - `cudaEventCreateWithFlags` (&event, cudaEventDisableTiming)
Libraries

CUBLAS
CUFFT
MAGMA
CULA
Thrust
...

A Simple Example

```cpp
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>

int main(void)
{
    // H has storage for 4 integers
    thrust::host_vector<int> H(4);

    // initialize individual elements
    H[0] = 14;
    H[1] = 20;
    H[2] = 38;
    H[3] = 46;
}
```
// H.size() returns the size of vector H
std::cout << "H has size " << H.size() << std::endl;

// print contents of H
for(int i = 0; i < H.size(); i++)
 std::cout << "H[" << i << "] = " << H[i] << std::endl;

// resize H
H.resize(2);

std::cout << "H now has size " << H.size() << std::endl;

// Copy host_vector H to device_vector D
thrust::device_vector<int> D = H;
// elements of D can be modified
D[0] = 99;
D[1] = 88;

// print contents of D
for(int i = 0; i < D.size(); i++)
 std::cout << "D[" << i << "] = " << D[i] << std::endl;

// H and D are automatically deleted when the function returns
return 0;
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

int main(void)
{
 // generate 16M random numbers on the host
 thrust::host_vector<int> h_vec(1 << 24);
 thrust::generate(h_vec.begin(), h_vec.end(), rand);

 // transfer data to the device
 thrust::device_vector<int> d_vec = h_vec;

 // sort data on the device
 thrust::sort(d_vec.begin(), d_vec.end());

 // transfer data back to host
 thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
}
Objectives

• Programmer productivity
 – Rapidly develop complex applications
 – Leverage parallel primitives
• Encourage generic programming
 – Don’t reinvent the wheel
 – E.g. one reduction to rule them all
• High performance
 – With minimal programmer effort
• Interoperability
 – Integrates with CUDA C/C++ code
What is Thrust?

• C++ template library for CUDA
 – Mimics Standard Template Library (STL)
• Containers
 – thrust::host_vector<T>
 – thrust::device_vector<T>
• Algorithms
 – thrust::sort()
 – thrust::reduce()
 – thrust::inclusive_scan()
 – Etc.
Namespaces

• C++ supports namespaces
 – Thrust uses thrust namespace
 • thrust::device_vector
 • thrust::copy
 – STL uses std namespace
 • std::vector
 • std::list

• Avoids collisions
 – thrust::sort()
 – std::sort()

• For brevity
 – using namespace thrust;
Containers

• Make common operations concise and readable
 – Hides cudaMalloc, cudaMemcpy and cudaFree

```cpp
// allocate host vector with two elements
thrust::host_vector<int> h_vec(2);

// copy host vector to device
thrust::device_vector<int> d_vec = h_vec;

// manipulate device values from the host
d_vec[0] = 13;
d_vec[1] = 27;

std::cout << "sum: " << d_vec[0] + d_vec[1] << std::endl;

// vector memory automatically released w/ free() or cudaFree()
```
Containers

- Compatible with STL containers
 - Eases integration
 - vector, list, map, ...

```c++
// list container on host
std::list<int> h_list;
h_list.push_back(13);
h_list.push_back(27);

// copy list to device vector
thrust::device_vector<int> d_vec(h_list.size());
thrust::copy(h_list.begin(), h_list.end(), d_vec.begin());

// alternative method
thrust::device_vector<int> d_vec(h_list.begin(), h_list.end());
```

Note: initializing an STL container with a device_vector works, but results in one cudaMemcpy() for each element instead of a single cudaMemcpy for the entire vector.
Iterators

• Sequences defined by pair of iterators

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

d_vec.begin(); // returns iterator at first element of d_vec
d_vec.end()    // returns iterator one past the last element of d_vec

// [begin, end) pair defines a sequence of 4 elements
```
Iterators

- Iterators act like pointers

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

thrust::device_vector<int>::iterator begin = d_vec.begin();
thrust::device_vector<int>::iterator end   = d_vec.end();

int length = end - begin; // compute size of sequence [begin, end)

end = d_vec.begin() + 3; // define a sequence of 3 elements
```

```
begin  end
```

```cpp

```
Iterators

• Use iterators like pointers

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

thrust::device_vector<int>::iterator begin = d_vec.begin();

*begin = 13;          // same as d_vec[0] = 13;
int temp = *begin;    // same as temp = d_vec[0];

begin++;              // advance iterator one position

*begin = 25;          // same as d_vec[1] = 25;
```
Iterators

• Track memory space (host/device)
 – Guides algorithm dispatch

// initialize random values on host
thrust::host_vector<int> h_vec(1000);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// copy values to device
thrust::device_vector<int> d_vec = h_vec;

// compute sum on host
int h_sum = thrust::reduce(h_vec.begin(), h_vec.end());

// compute sum on device
int d_sum = thrust::reduce(d_vec.begin(), d_vec.end());
Iterators

• Convertible to raw pointers

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

// obtain raw pointer to device vector’s memory
int * ptr = thrust::raw_pointer_cast(&d_vec[0]);

// use ptr in a CUDA C kernel
my_kernel<<<N/256, 256>>>(N, ptr);

// Note: ptr cannot be dereferenced on the host!
// raw pointers do not know where they live
// Thrust iterators do
```
Iterators

• **Wrap raw pointers with** `device_ptr`

```cpp
int N = 10;

// raw pointer to device memory
int * raw_ptr;
cudaMalloc((void **) &raw_ptr, N * sizeof(int));

// wrap raw pointer with a device_ptr
thrust::device_ptr<int> dev_ptr(raw_ptr);

// use device_ptr in thrust algorithms
thrust::fill(dev_ptr, dev_ptr + N, (int) 0);

// access device memory through device_ptr
dev_ptr[0] = 1;

// extract raw pointer from device_ptr
int * raw_ptr2 = thrust::raw_pointer_cast(dev_ptr);

// free memory
cudaFree(raw_ptr);
```
Recap

• Containers
 – Manage host & device memory
 – Automatic allocation and deallocation
 – Simplify data transfers

• Iterators
 – Behave like pointers
 – Keep track of memory spaces
 – Convertible to raw pointers

• Namespaces
 – Avoid collisions
C++ Background

• Function templates

```cpp
// function template to add numbers (type of T is variable)
template< typename T >
T add(T a, T b)
{
    return a + b;
}

// add integers
int x = 10; int y = 20; int z;
z = add<int>(x,y); // type of T explicitly specified
z = add(x,y); // type of T determined automatically

// add floats
float x = 10.0f; float y = 20.0f; float z;
z = add<float>(x,y); // type of T explicitly specified
z = add(x,y); // type of T determined automatically
```
C++ Background

• Function objects (Functors)

```cpp
// templated functor to add numbers
template< typename T >
class add
{
    public:
    T operator()(T a, T b)
    {
        return a + b;
    }
};

int x = 10; int y = 20; int z;
add<int> func; // create an add functor for T=int
z = func(x,y); // invoke functor on x and y

float x = 10; float y = 20; float z;
add<float> func; // create an add functor for T=float
z = func(x,y); // invoke functor on x and y
```
struct add_x {
 add_x(int x) : x(x) {} int operator()(int y) { return x + y; }

private:
 int x;
};

// Now you can use it like this:
add_x add42(42); // create an instance of the functor class
int i = add42(8); // and "call" it
assert(i == 50); // and it added 42 to its argument

std::vector<int> in; // assume this contains a bunch of values
std::vector<int> out;
// Pass a functor to std::transform, which calls the functor on every
// element in the input sequence, and stores the result to the output
// sequence
// unlike a function pointer this can be resolved and inlined at
// compile time
std::transform(in.begin(), in.end(), out.begin(), add_x(1));
assert(out[i] == in[i] + 1); // for all i
C++ Background

• Generic Algorithms

```cpp
// apply function f to sequences x, y and store result in z
template <typename T, typename Function>
void transform(int N, T * x, T * y, T * z, Function f)
{
    for (int i = 0; i < N; i++)
        z[i] = f(x[i], y[i]);
}

int N = 100;
int x[N]; int y[N]; int z[N];

add<int> func; // add functor for T=int
transform(N, x, y, z, func); // compute z[i] = x[i] + y[i]
transform(N, x, y, z, add<int>()); // equivalent
```
Algorithms

• Thrust provides many standard algorithms
 – Transformations
 – Reductions
 – Prefix Sums
 – Sorting

• Generic definitions
 – General Types
 • Built-in types (int, float, …)
 • User-defined structures
 – General Operators
 • reduce with plus operator
 • scan with maximum operator
Algorithms

• General types and operators

```c++
#include <thrust/reduce.h>

// declare storage
device_vector<int> i_vec = ...
device_vector<float> f_vec = ...

// sum of integers (equivalent calls)
reduce(i_vec.begin(), i_vec.end());
reduce(i_vec.begin(), i_vec.end(), 0, plus<int>());

// sum of floats (equivalent calls)
reduce(f_vec.begin(), f_vec.end());
reduce(f_vec.begin(), f_vec.end(), 0.0f, plus<float>());

// maximum of integers
reduce(i_vec.begin(), i_vec.end(), 0, maximum<int>());
```

Initial value of sum
Algorithms

• General types and operators

```cpp
struct negate_float2
{
    __host__ __device__
    float2 operator()(float2 a)
    {
        return make_float2(-a.x, -a.y);
    }
};

// declare storage
device_vector<float2> input  = ...  
device_vector<float2> output = ...  

// create functor
negate_float2 func;

// negate vectors
transform(input.begin(), input.end(), output.begin(), func);
```
Algorithms

• General types and operators

 // compare x component of two float2 structures
 struct compare_float2
 {
 __host__ __device__
 bool operator()(float2 a, float2 b)
 {
 return a.x < b.x;
 }
 };

 // declare storage
 device_vector<float2> vec = ...;

 // create comparison functor
 compare_float2 comp;

 // sort elements by x component
 sort(vec.begin(), vec.end(), comp);
Algorithms

• Operators with State

```
// compare x component of two float2 structures
struct is_greater_than
{
    int threshold;

    is_greater_than(int t) { threshold = t; }

    __host__ __device__
    bool operator()(int x) { return x > threshold; }
};

device_vector<int> vec = ...;

// create predicate functor (returns true for x > 10)
is_greater_than pred(10);

// count number of values > 10
int result = count_if(vec.begin(), vec.end(), pred);
```
Recap

- Algorithms
 - Generic
 - Support general types and operators
 - Statically dispatched based on iterator type
 - Memory space is known at compile time
 - Have default arguments
 - `reduce(begin, end)`
 - `reduce(begin, end, init, binary_op)`
Fancy Iterators

• Behave like “normal” iterators
 – Algorithms don't know the difference

• Examples
 – constant_iterator
 – counting_iterator
 – transform_iterator
 – permutation_iterator
 – zip_iterator
Fancy Iterators

- `constant_iterator`
 - Mimics an infinite array filled with a constant value

```c++
// create iterators
constant_iterator<int> begin(10);
constant_iterator<int> end = begin + 3;

begin[0]  // returns 10
begin[1]  // returns 10
begin[100] // returns 10

// sum of [begin, end)
reduce(begin, end);   // returns 30 (i.e. 3 * 10)
```
Fancy Iterators

• counting_iterator
 – Mimics an infinite array with sequential values

```cpp
// create iterators
counting_iterator<int> begin(10);
counting_iterator<int> end = begin + 3;

begin[0]    // returns 10
begin[1]    // returns 11
begin[100]  // returns 110

// sum of [begin, end)
reduce(begin, end);   // returns 33 (i.e. 10 + 11 + 12)
```
Fancy Iterators

• transform_iterator
 – Yields a transformed sequence
 – Facilitates kernel fusion (e.g. sum of squares)
Fancy Iterators

- `transform_iterator`
 - Conserves memory capacity and bandwidth

// initialize vector
device_vector<int> vec(3);

// create iterator (type omitted)
first = make_transform_iterator(vec.begin(), negate<int>());
last = make_transform_iterator(vec.end(), negate<int>())

first[0] // returns -10
first[1] // returns -20

// sum of [begin, end)
reduce(first, last); // returns -60 (i.e. -10 + -20 + -30)
Fancy Iterators

• `zip_iterator`
 – Looks like an array of structs (AoS)
 – Stored in structure of arrays (SoA)
Fancy Iterators

• zip_iterator

// initialize vectors
device_vector<int> A(3);
device_vector<char> B(3);

// create iterator (type omitted)
first = make_zip_iterator(make_tuple(A.begin(), B.begin()));
last = make_zip_iterator(make_tuple(A.end(), B.end()));

first[0] // returns tuple(10, 'x')
first[1] // returns tuple(20, 'y')
first[2] // returns tuple(30, 'z')

// maximum of [begin, end)
maximum< tuple<int, char> > binary_op;
reduce(first, last, first[0], binary_op); // returns tuple(30,'z')
// tuple() defines a comparison operator (specifically <)
Best Practices

• Fusion
 – Combine related operations together

• Structure of Arrays
 – Ensure memory coalescing

• Implicit Sequences
 – Eliminate memory accesses
Fusion

• Combine related operations together
 – Conserves memory bandwidth

• Example: SNRM2
 – Square each element
 – Compute sum of squares and take $\sqrt{}$
 – The fused implementation reads the array once while the un-fused implementation performs 2 reads and 1 write per element
Fusion

• Unoptimized implementation

```cpp
// define transformation f(x) -> x^2
struct square
{
    __host__ __device__
    float operator()(float x)
    {
        return x * x;
    }
};

float snrm2_slow(device_vector<float>& x)
{
    // without fusion
    device_vector<float> temp(x.size());
    transform(x.begin(), x.end(), temp.begin(), square());

    return sqrt( reduce(temp.begin(), temp.end()) );
}
```
Fusion

• Optimized implementation (3.8x faster)

```cpp
// define transformation f(x) -> x^2
struct square
{
    __host__ __device__
    float operator()(float x)
    {
        return x * x;
    }
};

float snrm2_fast(device_vector<float>& x)
{
    // with fusion
    return sqrt( transform_reduce(x.begin(), x.end(),
                                square(), 0.0f, plus<float>()) );
}
```
Structure of Arrays (SoA)

- Array of Structures (AoS)
 - Often does not obey coalescing rules
 - `device_vector<float3>`
- Structure of Arrays (SoA)
 - Obeys coalescing rules
 - Components stored in separate arrays
 - `device_vector<float> x, y, z;`
- Example: Rotate 3d vectors
 - SoA is 2.8x faster
struct rotate_float3
{
 __host__ __device__
 float3 operator()(float3 v)
 {
 float x = v.x;
 float y = v.y;
 float z = v.z;

 float rx = 0.36f*x + 0.48f*y - 0.80f*z;
 float ry = -0.80f*x + 0.60f*y + 0.00f*z;
 float rz = 0.48f*x + 0.64f*y + 0.60f*z;

 return make_float3(rx, ry, rz);
 }
};

...

device_vector<float3> vec(N);

transform(vec.begin(), vec.end, vec.begin(), rotate_float3());
struct rotate_tuple
{
 __host__ __device__
 tuple<float, float, float> operator()(tuple<float, float, float> v)
 {
 float x = get<0>(v);
 float y = get<1>(v);
 float z = get<2>(v);

 float rx = 0.36f*x + 0.48f*y + -0.80f*z;
 float ry = -0.80f*x + 0.60f*y + 0.00f*z;
 float rz = 0.48f*x + 0.64f*y + 0.60f*z;

 return make_tuple(rx, ry, rz);
 }
};

...
Implicit Sequences

• Avoid storing sequences explicitly
 – Constant sequences
 • \([1, 1, 1, 1, \ldots]\)
 – Incrementing sequences
 • \([0, 1, 2, 3, \ldots]\)

• Implicit sequences require no storage
 – `constant_iterator`
 – `counting_iterator`

• Example
 – Index of the smallest element
// return the smaller of two tuples
struct smaller_tuple
{
 tuple<float,int> operator()(tuple<float,int> a, tuple<float,int> b)
 {
 if (a < b)
 return a;
 else
 return b;
 }
};

int min_index(device_vector<float>& vec)
{
 // create explicit index sequence [0, 1, 2, ...)
 device_vector<int> indices(vec.size());
 sequence(indices.begin(), indices.end());

 tuple<float,int> init(vec[0],0);
 tuple<float,int> smallest;

 smallest = reduce(make_zip_iterator(make_tuple(vec.begin(), indices.begin())),
 make_zip_iterator(make_tuple(vec.end(), indices.end())),
 init,
 smaller_tuple());

 return get<1>(smallest);
}
// return the smaller of two tuples
struct smaller_tuple
{
 tuple<float, int> operator()(tuple<float, int> a, tuple<float, int> b)
 {
 if (a < b)
 return a;
 else
 return b;
 }
};

int min_index(device_vector<float>& vec)
{
 // create implicit index sequence [0, 1, 2, ...)
 counting_iterator<int> begin(0);
 counting_iterator<int> end(vec.size());

 tuple<float, int> init(vec[0], 0);
 tuple<float, int> smallest;

 smallest = reduce(make_zip_iterator(make_tuple(vec.begin(), begin)),
 make_zip_iterator(make_tuple(vec.end(), end)),
 init,
 smaller_tuple());

 return get<1>(smallest);
}
Recap

• **Best Practices**
 – Fusion
 • 3.8x faster
 – Structure of Arrays
 • 2.8x faster
 – Implicit Sequences
 • 3.4x faster
Additional Resources

• Thrust
 – Homepage http://thrust.github.com/
CUDA Libraries

Joseph Kider
University of Pennsylvania
CIS 565 - Spring 2011
CUDA Specialized Libraries: PyCUDA

• PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python
PyCUDA

- Third party open source, written by Andreas Klöckner
- Exposes all of CUDA via Python bindings
- Compiles CUDA on the fly
 - CUDA is presented as an interpreted language
- Integrated with numpy
- Handles memory management, resource allocation
- CUDA programs are Python strings
 - Metaprogramming - modify source code on the fly

https://developer.nvidia.com/pycuda
PyCUDA - Differences

• Object cleanup tied to lifetime of objects
 – Easier to write correct, leak- and crash-free code
 – PyCUDA knows about dependencies, too, so it won’t detach from a context before all memory allocated in it is also freed

• Convenience: Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime

• Completeness: PyCUDA provides the full power of CUDA’s driver API

• Automatic Error Checking: All CUDA errors are automatically translated into Python exceptions

• Speed: PyCUDA’s base layer is written in C++
```python
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

a = numpy.random.randn(4,4).astype(numpy.float32)
a_gpu = cuda.mem Alloc(a.size, a.dtype.itemsize)
cuda.Memcpy_htod(a_gpu, a)

mod = cuda.SourceModule(""
__global__ void doublify(float *a)
{
    int idx = threadIdx.x + threadIdx.y*4;
    a[idx] *= 2.0f;
}
"")
func = mod.get_function("doublify")
func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.Memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a
```
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
CUDA Specialized Libraries: CUDPP

• CUDPP: CUDA Data Parallel Primitives Library
 – CUDPP is a library of data-parallel algorithm primitives such as parallel prefix-sum ("scan"), parallel sort and parallel reduction

http://cudpp.github.io/
CUDPP - Design Goals

- **Performance**: aims to provide best-of-class performance for simple primitives
- **Modularity**: primitives easily included in other applications
 - CUDPP is provided as a library that can link against other applications
 - CUDPP calls run on the GPU on GPU data
 - They can be used as standalone calls on the GPU (on GPU data initialized by the calling application)
 - As GPU components in larger CPU/GPU applications.
CUDPP - Design Goals

• CUDPP is implemented as 4 layers:
 – The **Public Interface** is the external library interface, which is the intended entry point for most applications. The public interface calls into the Application-Level API.
 – The **Application-Level API** comprises functions callable from CPU code. These functions execute code jointly on the CPU (host) and the GPU by calling into the Kernel-Level API below them.
 – The **Kernel-Level API** comprises functions that run entirely on the GPU across an entire grid of thread blocks. These functions may call into the CTA-Level API below them.
 – The **CTA-Level API** comprises functions that run entirely on the GPU within a single Cooperative Thread Array (CTA, aka thread block). These are low-level functions that implement core data-parallel algorithms, typically by processing data within shared memory.
CUDPP - Design Goals

• Programmers may use any of the lower three CUDPP layers in their own programs by building the source directly into their application.

• However, the typical usage of CUDPP is to link to the library and invoke functions in the CUDPP Public Interface.
CUDPP + Thrust

- CUDPP's interface is optimized for performance while Thrust is oriented towards productivity

```c
int main(void)
{
    unsigned int numElements = 32768;

    // allocate host memory
    thrust::host_vector<float> h_idata(numElements);
    // initialize the memory
    thrust::generate(h_idata.begin(), h_idata.end(),
                     rand);
}```
CUDPP + Thrust

// set up plan
CUDPPConfiguration config;
config.op = CUDPP_ADD;
config.datatype = CUDPP_FLOAT;
config.algorithm = CUDPP_SCAN;
config.options = CUDPP_OPTION_FORWARD | CUDPP_OPTION_EXCLUSIVE;

CUDPPHandle scanplan = 0;
CUDPPResult result = cudppPlan(&scanplan, config, numElements, 1, 0);

if(CUDPP_SUCCESS != result)
{
    printf("Error creating CUDPPPlan\n");
    exit(-1);
}

// Run the scan
_cudppScan(scanplan, 
    thrust::raw_pointer_cast(&d_odata[0]),
    thrust::raw_pointer_cast(&d_idata[0]),
    numElements);
CUDA Specialized Libraries: CUBLAS

- Cuda Basic Linear Algebra Subroutines
- Saxpy, conjugate gradient, linear solvers

https://developer.nvidia.com/cublas
CUBLAS

- CUDA accelerated BLAS (Basic Linear Algebra Subprograms)
  - Create matrix and vector objects in GPU memory space
  - Fill objects with data
  - Call sequence of CUBLAS functions
  - Retrieve data from GPU
CUBLAS: Performance - CPU vs GPU

**Single Precision BLAS: SGEMM**

- Gflops vs Matrix Size
- Tesla C1060

**Double Precision BLAS: DGEMM**

- Gflops vs Matrix Size
- Tesla C1060

**Notes:**
- CUBLAS: CUDA 2.3, Tesla C1060
- MKL 10.0.3: Intel Core2 Extreme, 3.00GHz
CUBLAS

• GPU Variant 100 times faster than CPU version
• Matrix size is limited by graphics card memory and texture size
• Although taking advantage of sparse matrices would help reduce memory consumption, sparse matrix storage is not implemented by CUBLAS
CUDA Specialized Libraries: CUFFT

• Cuda Based Fast Fourier Transform Library
• The FFT is a divide-and-conquer algorithm for efficiently computing discrete Fourier transforms of complex or real-valued data sets
• One of the most important and widely used numerical algorithms, with applications that include computational physics and general signal processing
CUFFT

• Computes parallel FFT on the GPU
• Uses “plans” like FFTW*
  – A plan contains information about optimal configuration for a given transform
  – Plans can prevent recalculation
  – Good fit for CUFFT because different kinds of FFTs require different thread/block configurations

* FFTW is a popular CPU library for FFT
CUFFT

• 1D, 2D and 3D transforms of complex and real-valued data
• Batched execution for doing multiple 1D transforms in parallel
• 1D transform size up to 8M elements
• 2D and 3D transform sizes in the range [2, 16384]
• In-place and out-of-place transforms
CUFFT: Example

```c
#define NX 256
#define NY 128

cufftHandle plan;
cufftComplex *idata, *odata;
cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);
cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);

/* Create a 2D FFT plan. */
cufftPlan2d(&plan, NX, NY, CUFFT_C2C);

/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(idata);
cudaFree(odata);
```
CUFFT: Performance – CPU vs GPU

**Single Precision FFT**

- cuFFT 2.3
- MKL 4 Threads
- FFTW 1 Thread

**Double Precision FFT**

- cuFFT 2.3
- MKL 4 Threads

**cuFFT 2.3: NVIDIA Tesla C1060 GPU**

**MKL 10.1r1: Quad-Core Intel Core i7 (Nehalem) 3.2GHz**
CUDA Specialized Libraries: CULA

- CULA is EM Photonics' GPU-accelerated numerical linear algebra library that contains a growing list of LAPACK functions.
- LAPACK stands for Linear Algebra PACKage. It is an industry standard computational library that has been in development for over 15 years and provides a large number of routines for factorization, decomposition, system solvers, and eigenvalue problems.
CUDA Specialized Libraries: HONEI

A collection of libraries for numerical computations targeting multiple processor architectures
HONEI

- HONEI is an open-source collection of libraries offering a hardware oriented approach to numerical calculations.
- HONEI abstracts the hardware, and applications written on top of HONEI can be executed on a wide range of computer architectures such as CPUs, GPUs and the Cell processor.
  - The most important frontend library is libhoneyila, HONEI's linear algebra library.
  - The numerics and math library libhoneyimath contains high performance kernels for iterative linear system solvers as well as other useful components like interpolation and approximation.