CS 677: Parallel Programming for Many-core Processors
Lecture 6

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu
Overview

• Parallel Patterns: Convolution
 – Constant memory
 – Cache

• Parallel Patterns: Reduction Trees

• Parallel Patterns: Parallel Prefix Sum (Scan)
Convolution, Constant Memory and Constant Caching
Convolution

- Array operation where each output is a weighted sum of a collection of neighboring input elements
- Weights are defined in a *mask array* a.k.a. *convolution kernel*
1D Convolution
1D Convolution
1D Convolution - Boundary Condition
__global__ void convolution_1d_basic(float *N, float *M, float *P, int mask_width, int width){

 int i = blockIdx.x*blockDim.x+threadIdx.x;

 float Pvalue = 0;
 int N_start = i-(mask_width/2);
 for(int j=0; j< mask_width; j++){
 if(N_start +j >=0 && N_start+j < width){
 Pvalue += N[N_start+j]*M[j];
 }
 }
 P[i] = Pvalue;
}
2D Convolution - Inside Cells
2D Convolution - Ghost Cells

N

P

M

0 0 0 0 0
0 3 4 5 6
0 2 3 4 5
0 3 5 6 7
0 1 1 3 1

0 1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 0 0 0 0
0 9 16 15 12
0 8 15 16 15
0 9 20 18 14
0 2 3 6 1

© David Kirk/NVIDIA and Wen-mei W. Hwu
University of Illinois, 2007-2011
Access Pattern for M

• M is referred to as mask (a.k.a. kernel, filter, etc.)
 – Elements of M are called mask (kernel, filter) coefficients
• Calculation of all output P elements need M
• M is not changed during kernel

• Bonus - M elements are accessed in the same order when calculating all P elements

• M is a good candidate for Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011
How to Use Constant Memory

• Host code allocates, initializes variables the same way as any other variables that need to be copied to the device

• Use `cudaMemcpyToSymbol(dest, src, size)` to copy the variable into the device memory
 – Declare `__const__ float M[MASK_WIDTH] first`

• This copy function tells the device that the variable will not be modified by the kernel and can be safely cached
Kernel using Constant Memory

```c
__const__ float Mc[MASK_WIDTH]

__global__ void convolution_1d_basic(float *N,
    float *P, int mask_width, int width){

    int i = blockIdx.x*blockDim.x+threadIdx.x;

    float Pvalue = 0;
    int N_start = i-(mask_width/2);
    for( int j=0; j< mask_width; j++){
        if(N_start +j >=0 && N_start+j < width){
            Pvalue += N[N_start+j]*Mc[j];
        }
    }
    P[i] = Pvalue;
}
... cudaMemcpysymol(Mc, M, mask_width *sizeof(float));
Using Shared Memory

• Elements of the input vector are used in multiple computations
• Opportunity to use shared memory

• Shared memory tile must be larger than mask!
Using Shared Memory

N_ds in shared memory contains 8 elements

| 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Mask_Width is 5

P

| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

• For Mask_Width = 5, we load 8+5-1 = 12 elements (12 memory loads)
Each Output uses 5 Input Elements

- ...

$N_{ds}$

Mask_Width is 5

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498

University of Illinois, 2007-2012
Benefits from Tiling

• $(8+5-1)=12$ elements loaded
• $8 \times 5$ global memory accesses replaced by shared memory accesses
• This gives a bandwidth reduction of $40/12=3.3$
Benefits from Tiling

• Tile_Width + Mask_Width - 1 elements loaded
• Tile_Width * Mask_Width global memory accesses replaced by shared memory access
• This gives a reduction of bandwidth by

\[
\frac{(\text{Tile}_\text{Width} \times \text{Mask}_\text{Width})}{(\text{Tile}_\text{Width} + \text{Mask}_\text{Width} - 1)}
\]
Another Way to Look at Reuse

- \text{N}_6 \text{ is used by } \text{P}_8 \ (1X)
- \text{N}_7 \text{ is used by } \text{P}_8, \text{P}_9 \ (2X)
- \text{N}_8 \text{ is used by } \text{P}_8, \text{P}_9, \text{P}_{10} \ (3X)
- \text{N}_9 \text{ is used by } \text{P}_8, \text{P}_9, \text{P}_{10}, \text{P}_{11} \ (4X)
- \text{N}_{10} \text{ is used by } \text{P}_8, \text{P}_9, \text{P}_{10}, \text{P}_{11}, \text{P}_{12} \ (5X)
- \ldots \ (5X)
- \text{N}_{14} \text{ is used by } \text{P}_{12}, \text{P}_{13}, \text{P}_{14}, \text{P}_{15} \ (4X)
- \text{N}_{15} \text{ is used by } \text{P}_{13}, \text{P}_{14}, \text{P}_{15} \ (3X)
Another Way to Look at Reuse

• The total number of global memory accesses (to the \((8+5-1)=12\) N elements) replaced by shared memory accesses is

\[
1 + 2 + 3 + 4 + 5 \times (8-5+1) + 4 + 3 + 2 + 1 \\
= 10 + 20 + 10 \\
= 40
\]

So the reduction is

\[
40/12 = 3.3
\]
Ghost Elements

• For a boundary tile, we load $\text{Tile\_Width} + (\text{Mask\_Width}-1)/2$ elements
  – 10 in our example of $\text{Tile\_Width} = 8$ and $\text{Mask\_Width} = 5$

• Computing boundary elements does not access global memory for ghost cells
  – Total accesses is $3 + 4 + 6 \times 5 = 37$ accesses

The reduction is $37/10 = 3.7$
In General for 1D

• The total number of global memory accesses to the \((\text{Tile}_\text{Width}+\text{Mask}_\text{Width}-1)\) \(N\) elements replaced by shared memory accesses is

\[
1 + 2 + \ldots + \text{Mask}_\text{Width}-1 + \text{Mask}_\text{Width} \times (\text{Tile}_\text{Width} - \text{Mask}_\text{Width}+1) + \text{Mask}_\text{Width}-1 + \ldots + 2 + 1
= (\text{Mask}_\text{Width}-1) \times \text{Mask}_\text{Width} + \text{Mask}_\text{Width} \times (\text{Tile}_\text{Width}-\text{Mask}_\text{Width}+1)
= \text{Mask}_\text{Width} \times (\text{Tile}_\text{Width})
\]
Bandwidth Reduction in 1D

- The reduction is

\[ \text{Reduction} = \frac{\text{Mask\_Width} \times (\text{Tile\_Width})}{(\text{Tile\_Width} + \text{Mask\_Size} - 1)} \]

<table>
<thead>
<tr>
<th>Tile_Width</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask_Width = 5</td>
<td>4.0</td>
<td>4.4</td>
<td>4.7</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mask_Width = 9</td>
<td>6.0</td>
<td>7.2</td>
<td>8.0</td>
<td>8.5</td>
<td>8.7</td>
</tr>
</tbody>
</table>
2D Output Tiling and Indexing

- Use a thread block to calculate a tile of P
  - Each output tile is of TILE_SIZE for both x and y

```cpp
col_o = blockIdx.x * TILE_WIDTH + tx;
row_o = blockIdx.y * TILE_WIDTH + ty;
```
Halo Elements

Mask_Width = 5

Input Tile

Output Tile

© David Kirk/NVIDIA and Wen-mei W. Hwu       ECE408/CS483/ECE498al
University of Illinois, 2007-2012
8x8 Output Tile

- 12X12=144 N elements need to be loaded into shared memory
- The calculation of each P element needs to access 25 N elements
- 8X8X25 = 1600 global memory accesses are converted into shared memory accesses
- A reduction of 1600/144 = 11X
In General for 2D

- \((\text{Tile\_Width} + \text{Mask\_Width} - 1)^2\) \(N\) elements need to be loaded into shared memory.
- The calculation of each \(P\) element needs to access \(\text{Mask\_Width}^2\) \(N\) elements.
- \(\text{Tile\_Width}^2 \times \text{Mask\_Width}^2\) global memory accesses are converted into shared memory accesses.
- The reduction is
  \[
  \frac{\text{Tile\_Width}^2 \times \text{Mask\_Width}^2}{(\text{Tile\_Width} + \text{Mask\_Width} - 1)^2}
  \]
Bandwidth Reduction in 2D

- The reduction is

\[
\text{Tile\_Width}^2 \times \text{Mask\_Width}^2 / (\text{Tile\_Width} + \text{Mask\_Width} - 1)^2
\]

<table>
<thead>
<tr>
<th>Tile_Width</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction</td>
<td>11.1</td>
<td>16</td>
<td>19.7</td>
<td>22.1</td>
</tr>
<tr>
<td>Mask_Width = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction</td>
<td>20.3</td>
<td>36</td>
<td>51.8</td>
<td>64</td>
</tr>
<tr>
<td>Mask_Width = 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© David Kirk/NVIDIA and Wen-mei W. Hwu       ECE408/CS483/ECE498al
University of Illinois, 2007-2012
Programmer View of CUDA Memories (Review)

- Each thread can:
  - Read/write per-thread registers (~1 cycle)
  - Read/write per-block shared memory (~5 cycles)
  - Read/write per-grid global memory (~500 cycles)
  - Read/only per-grid constant memory (~5 cycles with caching)
Memory Hierarchies

• If every time we needed a piece of data, we had to go to main memory to get it, computers would take a lot longer to do anything

• On today’s processors, main memory accesses take hundreds of cycles

• One solution: Caches
Cache

• In order to keep cache fast, it needs to be small, so we cannot fit the entire data set in it.

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain, July 18-22 2011
Cache

- Cache is a unit of volatile memory storage.

- A cache is an “array” of cache lines.

- Cache line can usually hold data from several consecutive memory addresses.

- When data is requested from memory, an entire cache line is loaded into the cache, in an attempt to reduce main memory requests.
Caches

Some definitions:

– Spatial locality: is when the data elements stored in consecutive memory locations are accessed consecutively

– Temporal locality: is when the same data element is accessed multiple times in short period of time

• Both spatial locality and temporal locality improve the performance of caches
Scratchpad vs. Cache

- Scratchpad (shared memory in CUDA) is another type of temporary storage used to relieve main memory contention.
- In terms of distance from the processor, scratchpad is similar to L1 cache.
- Unlike cache, scratchpad does not necessarily hold a copy of data that is in main memory.
- It requires explicit data transfer instructions, whereas cache does not.
Cache Coherence Protocol

- A mechanism for caches to propagate updates by their local processor to other caches (processors)
CPU and GPU have different caching philosophy

• CPU L1 caches are usually coherent
  – L1 is also replicated for each core
  – Even data that will be changed can be cached in L1
  – Updates to local cache copy invalidate (or less commonly update) copies in other caches
  – Expensive in terms of hardware and disruption of services (cleaning bathrooms at airports..)

• GPU L1 caches are usually incoherent
  – Avoid caching data that will be modified
GPU Cache Coherence

• Current CUDA implementation:
  – Provides coherence by disabling L1 cache after writes
  – There is room for improvement

• Custom implementations
  – Temporal coherence: invalidates cache using synchronized counters without message passing
  – Stall writes to cache blocks until they have been invalidated in other caches
More on Constant Caching

- Each SM has its own L1 cache
  - Low latency, high bandwidth access by all threads

- However, there is no way for threads in one SM to update the L1 cache in other SMs
  - No L1 cache coherence

This is not a problem if a variable is NOT modified by a kernel.
Reduction Trees
Partition and Summarize

• A commonly used strategy for processing large input data sets
  – There is no required order of processing elements in a data set (associative and commutative)
  – Partition the data set into smaller chunks
  – Have each thread to process a chunk
  – Use a reduction tree to summarize the results from each chunk into the final answer

• We will focus on the reduction tree step for now

• Google and Hadoop MapReduce frameworks are examples of this pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011
Reduction enables other techniques

- Reduction is also needed to clean up after some commonly used parallelizing transformations

- Privatization
  - Multiple threads write into an output location
  - Replicate the output location so that each thread has a private output location
  - Use a reduction tree to combine the values of private locations into the original output location
What is a reduction computation

- Summarize a set of input values into one value using a “reduction operation”
  - Max
  - Min
  - Sum
  - Product
- Often with user defined reduction operation function as long as the operation
  - Is associative and commutative
  - Has a well-defined identity value (e.g., 0 for sum)
A sequential reduction algorithm performs N operations - $O(N)$

- Initialize the result as an identity value for the reduction operation
  - Smallest possible value for max reduction
  - Largest possible value for min reduction
  - 0 for sum reduction
  - 1 for product reduction

- Scan through the input and perform the reduction operation between the result value and the current input value
A parallel reduction tree algorithm performs $N-1$ Operations in $\log(N)$ steps.
A tournament is a reduction tree with “max” operation
A Quick Analysis

• For N input values, the reduction tree performs
  – \((1/2)N + (1/4)N + (1/8)N + \ldots + (1/N) = (1- (1/N))N = N-1\) operations
  – In \(\log(N)\) steps - 1,000,000 input values take 20 steps
    • Assuming that we have enough execution resources
  – Average Parallelism \((N-1)/\log(N)\)
    • For \(N = 1,000,000\), average parallelism is 50,000
    • However, peak resource requirement is 500,000!

• This is a work-efficient parallel algorithm
  – The amount of work done is comparable to sequential
  – Many parallel algorithms are not work efficient
A Sum Reduction Example

• Parallel implementation:
  – Recursively halve # of threads, add two values per thread in each step
  – Takes \( \log(n) \) steps for \( n \) elements, requires \( n/2 \) threads

• Assume an in-place reduction using shared memory
  – The original vector is in device global memory
  – The shared memory is used to hold a partial sum vector
  – Each step brings the partial sum vector closer to the sum
  – The final sum will be in element 0
  – Reduces global memory traffic due to partial sum values
Some Observations

• In each iteration, two control flow paths will be sequentially traversed for each warp
  – Threads that perform addition and threads that do not
  – Threads that do not perform addition still consume execution resources

• No more than half of threads will be executing after the first step
  – All odd index threads are disabled after first step
  – After the 5th step, entire warps in each block will fail the if test, poor resource utilization but no divergence.
    • This can go on for a while, up to 5 more steps (1024/32=16= 2^5), where each active warp only has one productive thread until all warps in a block retire.
Thread Index Usage Matters

• In some algorithms, one can shift the index usage to improve the divergence behavior
  – Commutative and associative operators

• Example - given an array of values, “reduce” them to a single value in parallel
  – Sum reduction: sum of all values in the array
  – Max reduction: maximum of all values in the array
  – ...

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011
A Better Strategy

• Always compact the partial sums into the first locations in the partialSum[] array

• Keep the active threads consecutive
An Example of 16 threads

0 1 2 3 ... 13 14 15 16 17 18 19

0 + 16 15 + 31

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011
A Better Reduction Kernel

for (unsigned int stride = blockDim.x/2;
    stride >= 1;  stride >>= 1)
{
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t+stride];
}
A Quick Analysis

• For a 1024 thread block
  – No divergence in the first 5 steps
  – 1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
  – The final 5 steps will still have divergence
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2;
     stride >= 1; stride >>= 1)
{
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t+stride];
}
Parallel Algorithm Overhead

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2; stride >= 1; stride >>= 1)
{
  __syncthreads();
  if (t < stride)
    partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011
Parallel Execution Overhead

• Although the number of “operations” is N, each operation involves much more complex address calculation and intermediate result manipulation.

• If the parallel code is executed on a single-thread hardware, it would be significantly slower than the code based on the original sequential algorithm.
Parallel Prefix Sum (Scan)
Objective

• Prefix Sum (Scan) algorithms
  – frequently used for parallel work assignment and resource allocation
  – A key primitive in many parallel algorithms to covert serial computation into parallel computation
  – Based on reduction tree and reverse reduction tree

• Additional reading - Mark Harris, Parallel Prefix Sum with CUDA
(Inclusive) Prefix-Sum (Scan) Definition

**Definition:** The all-prefix-sums operation takes a binary associative operator $\oplus$, and an array of $n$ elements $[x_0, x_1, \ldots, x_{n-1}]$, and returns the array

$[x_0, (x_0 \oplus x_1), \ldots, (x_0 \oplus x_1 \oplus \ldots \oplus x_{n-1})].$

**Example:** If $\oplus$ is addition, then the all-prefix-sums operation on the array $[3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3]$, would return $[3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25]$. 
A Inclusive Scan Application Example

- Assume that we have a 100-inch sausage to feed 10 people
- We know how much each person wants in inches
  - [3 5 2 7 28 4 3 0 8 1]
- How do we cut the sausage quickly?
- How much will be left

- Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
- Method 2: calculate Prefix scan
  - [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)
A Inclusive Sequential Prefix-Sum

Given a sequence \([x_0, x_1, x_2, \ldots]\)

Calculate output \([y_0, y_1, y_2, \ldots]\)

Such that

\[
\begin{align*}
y_0 &= x_0 \\
y_1 &= x_0 + x_1 \\
y_2 &= x_0 + x_1 + x_2 \\
\end{align*}
\]

\[\vdots\]

Using a recursive definition

\[
y_i = y_{i-1} + x_i
\]
A Work Efficient C Implementation

\[ y[0] = x[0]; \]
for (i = 1; i < Max_i; i++)
\[ y[i] = y[i-1] + x[i]; \]

Computationally efficient:
N additions needed for N elements - O(N)
A Naïve Inclusive Parallel Scan

• Assign one thread to calculate each \( y \) element

• Have every thread to add up all \( x \) elements needed for the \( y \) element

\[
\begin{align*}
y_0 &= x_0 \\
y_1 &= x_0 + x_1 \\
y_2 &= x_0 + x_1 + x_2
\end{align*}
\]

• After the \( i^{th} \) iteration \( y_i \) contains its final value
Simple Inclusive Parallel Scan

```c
__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {
 __shared__ float XY[SECTION_SIZE];

 int i = blockIdx.x*blockdim.x + threadIdx.x;
 if(i<Inputsize){
 XY[threadIdx.x] = X[i];
 }

 for(int stride =1; stride <= threadIdx.x; stride *=2) {
 __syncthreads();
 XY[threadIdx.x] += XY[threadIdx.x-stride];
 }
}
```

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011
Simple Inclusive Parallel Scan
Work Efficiency Considerations

• Total amount of work: \( \sum (N \text{-stride}) \) for stride=1, 2, 4, \ldots, N/2
  – Total logN terms

• Total amount of work: N\log N - (N-1)

• Sequential code: N-1

• For 1024 elements, GPU code performs 9 times more operations

“Parallel programming is easy as long as you do not care about performance.”
Let’s Look at the Reduction Tree Again
Work-Efficient Parallel Scans

- Reuse intermediate results
- Distribute them to different threads

- Reduction tree can generate sum of $N$ numbers in $\log N$ steps
- Also generates number of useful sub-sums

- Two step algorithm
  - Reduction scan
  - Partial sum distribution using reverse tree
Reduction Scan Step

\[ \sum_{0..1} \]

\[ \sum_{2..3} \]

\[ \sum_{4..5} \]

\[ \sum_{6..7} \]

In place calculation

Final value after reduce

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011
Reduction Scan Step

- First step: modify elements at odd indexes
- Second step: modify elements at 4n-1
- Third step: modify elements at 8n-1
- ...
- Total ops: $N/2 + N/4 + ... = N-1$
Reduction Scan Step:  
Simple Kernel

```c
for(int stride =1; stride <= BlockDim.x; stride *=2) {
 __syncthreads();
 if((threadIdx.x+1)% (2*stride) ==0){
 XY[threadIdx.x] += XY[threadIdx.x-stride];
 }
}
```
Reduction Scan Step: Less Divergent Kernel

\[
\text{for}(\text{int} \ \text{stride} = 1; \ \text{stride} \leq \text{BlockDim.x}; \ \text{stride} *= 2) \\
\hspace{1em}\{ \\
\hspace{2em}\_\_\text{syncthreads}(); \\
\hspace{2em}\text{int} \ \text{index} = (\text{threadIdx.x}+1)*2*\text{stride}-1; \\
\hspace{2em}\text{if}(\text{index} < \text{blockDim.x})\{ \\
\hspace{3em}\text{XY}[\text{index}] += \text{XY}[\text{index}-\text{stride}]; \\
\hspace{2em}\} \\
\hspace{1em}\}\]

Uses consecutive threads for computation
Inclusive Post Scan Step

Move (add) a critical value to a central location where it is needed.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011
Inclusive Post Scan Step

• After reduction, \( XY[2^n-1] \) contain final values
• Largest gap between middle and last elements of input
  – Assume \( N \) is power of 2
• Need one addition to produce final value at the midpoint of this gap
• In the next step, largest gap between final values is half the previous gap, etc.
Putting it Together
Putting it together
Post Scan Step: Kernel

for(int stride=SECTION_SIZE/4; stride > 0; stride /=2){
    __syncthreads();
    int index = (threadIdx.x+1)*2*stride-1;
    if(index+stride < SECTION_SIZE){
        XY[index+stride] += XY[index];
    }
}

__syncthreads();

Y[i] = XY[threadIdx.x];

At each iteration, push the value from a position in XY that is a multiple of stride -1 to a position that is stride away
Efficiency Analysis

• Total operations for post scan step:
  \( \frac{N}{2} + \frac{N}{4} + \ldots + 4 + 2 - 1 < N - 2 \)

• Grand total: \( 2N - 3 \)

• Compared to:
  – \( N - 1 \) for sequential implementation
  – \( N \log N \) for naïve parallel implementation
(Exclusive) Prefix-Sum (Scan)

Definition: The all-prefix-sums operation takes a binary associative operator $\oplus$, and an array of n elements

$$[a_0, a_1, \ldots, a_{n-1}],$$

and returns the array

$$[0, a_0, (a_0 \oplus a_1), \ldots, (a_0 \oplus a_1 \oplus \ldots \oplus a_{n-2})].$$

Example: If $\oplus$ is addition, then the all-prefix-sums operation on the array

$$[3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3],$$

would return

$$[0 \ 3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22].$$
Why Exclusive Scan

• To find the beginning address of allocated buffers

• Inclusive and Exclusive scans can be easily derived from each other; it is a matter of convenience

\[
\begin{align*}
\text{Exclusive} & \quad [0 \ 3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22] \\
\text{Inclusive} & \quad [3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25]
\end{align*}
\]
Applications of Scan

• Scan is a simple and useful parallel building block for many parallel algorithms:
  - Radix sort
  - Quicksort
  - String comparison
  - Lexical analysis
  - Stream compaction
  - Run-length encoding
  - Polynomial evaluation
  - Solving recurrences
  - Tree operations
  - Histograms
  - Allocation
  - Etc.

• Scan is unnecessary in sequential computing!
Other Applications

- Assigning camp slots
- Assigning farmer market space
- Allocating memory to parallel threads
- Allocating memory buffer for communication channels
- ...