
Representation Independence ,
Confinement and Access Contr ol

Anindya Banerjee and David Naumann
ab@cis.ksu.edu and naumann@cs.stevens-tech.edu

Kansas State University and Stevens Institute of Technology

Banerjee&Naumann popl’02 – p.1/18

Class signer bug (jdk1.1)

public class Class
private Identity[] signers; //authenticated
public Identity[] getSigners()
return signers;

...
public class System

public Identity[] getKnownSigners() ...
...
class Bad

void bad()
Identity[] s = getSigners(); //leak
s[0] = System.getKnownSigners()[0];
doPrivileged("something bad");

...

Banerjee&Naumann popl’02 – p.2/18

Representation independence

class A
private Boolean g; // rep object
unit init() g := new Boolean();

g.set(true);
unit setg(bool x) g.set(x);
bool getg() return g.get();

Example: abstraction A using representation Boolean
to hold current value (or its negation).

Information hiding: type safety, visibility and scope
rules ensure that clients are not dependent on
encapsulated representation.

z:= new A(); z.setg(true); b:= z.getg();

Banerjee&Naumann popl’02 – p.3/18

Representation exposure

class A
private Boolean g; // rep object
unit init() g := new Boolean();

g.set(true);
unit setg(bool x) g.set(x);
bool getg() return g.get();
Object bad() return g;

Client behavior depends on representation:

z := new A(); w := (Boolean) z.bad();
if (w.get()) skip else diverge;

Banerjee&Naumann popl’02 – p.4/18

Representation exposure

class A
private Boolean g; // rep object
unit init() g := new Boolean();

g.set(true);
unit setg(bool x) g.set(x);
bool getg() return g.get();
Object bad() return g;

Client behavior depends on representation:

z := new A(); w := (Boolean) z.bad();
if (w.get()) skip else diverge;

Leaks also allow clients to violate invariants, e.g.,
“signers have all been authenticated for this class”.

Banerjee&Naumann popl’02 – p.5/18

Contrib ution

*

Formalization of pointer confinement and proof that it
ensures representation independence, for rich
fragment of Java.

Boole

C

D

A

A

Client objects Interface objects Representations

disallowed

allowed
Boole

Banerjee&Naumann popl’02 – p.6/18

Contrib ution

*

Formalization of pointer confinement and proof that it
ensures representation independence, for rich
fragment of Java.

Justify component replacement: in software
engineering (e.g., optimizing transformations,
refactoring) and in theory (e.g., equivalence of lazy
and eager access control).

Modular verification: reason about component in
terms of abstract interface spec.

Secure information flow and other program
analyses based on abstract interpretation.

Banerjee&Naumann popl’02 – p.6/18

Langua ge

pointers to mutable objects (but no ptr. arithmetic)

subclassing, dynamic dispatch, type-cast and -test

class-based visibility control

recursive types and methods

privilege-based access control

Major omissions: exceptions, threads, class loading
and reflection.

Straightforward compositional semantics:

object state contains locations and prim. vals.

heap maps locations to object states

methods bound to classes, not objects

commands denote functions
-

Banerjee&Naumann popl’02 – p.7/18

Langua ge

pointers to mutable objects (but no ptr. arithmetic)

subclassing, dynamic dispatch, type-cast and -test

class-based visibility control

recursive types and methods

privilege-based access control

Major omissions: exceptions, threads, class loading
and reflection.

Straightforward compositional semantics:

object state contains locations and prim. vals.

heap maps locations to object states

methods bound to classes, not objects

commands denote functions
-

Banerjee&Naumann popl’02 – p.7/18

Heap confinement for A, Rep

disallowed

C

D

Rep

Rep

A

A

Rep

allowed

iff has admissible partition

� � � � with

� , � , and

� � � � for
Banerjee&Naumann popl’02 – p.8/18

Confinement

Commands and method meanings preserve heap
confinement; corresponding conditions on
expressions and environments.

Semantic definition; static analysis separate
concern.

Signatures confined:
implies

implies
Methods not satisfying these conditions would
violate heap confinement or ignore their arg’s.

Semantic confinement can be ensured by simple
syntactic checks similar to ones in literature.

Banerjee&Naumann popl’02 – p.9/18

Confinement

Commands and method meanings preserve heap
confinement; corresponding conditions on
expressions and environments.

Semantic definition; static analysis separate
concern.

Signatures confined:
implies

implies
Methods not satisfying these conditions would
violate heap confinement or ignore their arg’s.

Semantic confinement can be ensured by simple
syntactic checks similar to ones in literature.

Banerjee&Naumann popl’02 – p.9/18

Confinement

Commands and method meanings preserve heap
confinement; corresponding conditions on
expressions and environments.

Semantic definition; static analysis separate
concern.

Signatures confined:
implies

implies
Methods not satisfying these conditions would
violate heap confinement or ignore their arg’s.

Semantic confinement can be ensured by simple
syntactic checks similar to ones in literature.

Banerjee&Naumann popl’02 – p.9/18

Confinement

Commands and method meanings preserve heap
confinement; corresponding conditions on
expressions and environments.

Semantic definition; static analysis separate
concern.

Signatures confined:
implies

implies
Methods not satisfying these conditions would
violate heap confinement or ignore their arg’s.

Semantic confinement can be ensured by simple
syntactic checks similar to ones in literature.

Banerjee&Naumann popl’02 – p.9/18

Simulation
Basic simulation
Classes and confined class table with

class extends

class extends

Relation for a single pair of
objects at same location .

A

h’ = hA’ * hRep’h = hA * hRep

Boole Boole

FT
A

Induced relations
iff (primitives and client-visible loc’s)

iff partition with

Banerjee&Naumann popl’02 – p.10/18

Simulation
Basic simulation
Classes and confined class table with

class extends

class extends

Relation for a single pair of
objects at same location .

A

h’ = hA’ * hRep’h = hA * hRep

Boole Boole

FT
A

Induced relations
iff (primitives and client-visible loc’s)

iff partition with

Banerjee&Naumann popl’02 – p.10/18

Simulation
Basic simulation
Classes and confined class table with

class extends

class extends

Relation for a single pair of
objects at same location .

A

h’ = hA’ * hRep’h = hA * hRep

Boole Boole

FT
A

Induced relations
iff (primitives and client-visible loc’s)

iff partition with � � � �

Banerjee&Naumann popl’02 – p.10/18

Main results

Abstraction theorem:
Given basic simulation for confined . If every
method body of A preserves then so
does every command.

(Commands in both clients and subclasses of .)

Identity extension lemma:
Suppose . Then

- - ,
if these heaps are both -free.

(Can also express in terms of heap visible to clients.)

Banerjee&Naumann popl’02 – p.11/18

Main results

Abstraction theorem:
Given basic simulation for confined . If every
method body of A preserves then so
does every command.

(Commands in both clients and subclasses of .)

Identity extension lemma:
Suppose . Then

- - ,
if these heaps are both -free.

(Can also express in terms of heap visible to clients.)

Banerjee&Naumann popl’02 – p.11/18

Access contr ol

Access matrix: and .

class Sys signer
unit writepass(String x)
check ; write(x,"passfile");

unit passwd(String x)
check ; dopriv in writepass(x);

class User signer
Sys s ...
unit use() dopriv in s.passwd("me");
unit try() dopriv in s.writepass("me");

Banerjee&Naumann popl’02 – p.12/18

Conc lusion

Contribution: analysis of information hiding for
pointers, subclassing, etc., using simple, extensible
denotational semantics.

Ongoing and future work:

polymorphism (essential to avoid Object)

static analysis and transformation for access
control (proved Fournet&Gordon [POPL02] equiv’s
in a denotational semantics for the funct. lang.)

information flow

static checking of confinement (sans annotation)

proof rules for simulation (A’s methods)

other confinement disciplines (e.g., read-only)
Banerjee&Naumann popl’02 – p.13/18

Related work

This paper, with other proof cases: http://www.cs.stevens-tech.edu/˜naumann/absApp.ps

A static analysis for instance-based confinement in Java: http:.../static.ps

A simple semantics and static analysis for Java security: http:.../tr2001.ps

J.Boyland: Alias burying, Software Practice & Experience 2001.

D.Clarke, J.Noble, J.Potter: Simple ownership types for object containment, ECOOP’01.

D.Grossman, G.Morrisett, S.Zdancewic: Syntactic type abstraction, TOPLAS 2000.

K.R.M.Leino, G.Nelson: Data abstraction and information hiding, TOPLAS to appear.

J.Mitchell, On the equivalence of data representations, McCarthy Festschrift 1991.

P.Müller, A.Poetzsch-Heffter: Modular specification and verification techniques for
object-oriented software components, Foundations of Component-Based Systems 2000.

P.O’Hearn, J.Reynolds, H.Yang: Local reasoning about programs that alter data
structures, CSL 2001.

J.Reynolds: Types, abstraction, and parametric polymorphism, Info. Processing ’83

J.Vitek, B.Bokowski: Confined types in Java, Software Practice & Experience 2001.

Banerjee&Naumann popl’02 – p.14/18

Appendix: static confinement

Signatures: for all

Phrases:

new

These suffice for semantic condition stronger than
needed for abstraction theorem.

Banerjee&Naumann popl’02 – p.15/18

Appendix: parametricity

Simulation is made unsound by rep exposure and also
by non-parametric constructs like unchecked casts,
&x < &y, sizeof(A), etc. which Java lacks.

Our results hold for any parametric allocator :
and

� � �

�

Equal heaps aren’t enough for some equivalences:
x := new C(); y := new C();
y := new C(); x := new C();
So take heaps up to isomorphism, in def of
equivalence or in model. Or model with non-det.
allocator.

Banerjee&Naumann popl’02 – p.16/18

Appendix: Meyer-Sieber

var in if else

var in

O-O version with closure as explicit object (with
method or).
Holds because locals objects and name spaces flat.
Need confinement if the integer is itself an object.

Banerjee&Naumann popl’02 – p.17/18

Appendix: semantic domains

bool

maps each identifier to its value
maps (declared&inherited) fields to values

is partial function on , with

maps each to .

com

Banerjee&Naumann popl’02 – p.18/18

Appendix: semantic domains

bool

maps each identifier to its value
maps (declared&inherited) fields to values

is partial function on , with

maps each to .

com

Banerjee&Naumann popl’02 – p.18/18

Appendix: semantic domains

bool

maps each identifier to its value
maps (declared&inherited) fields to values

is partial function on , with

maps each to .

com

Banerjee&Naumann popl’02 – p.18/18

Appendix: semantic domains

bool

maps each identifier to its value
maps (declared&inherited) fields to values

is partial function on , with

maps each to .

com

Banerjee&Naumann popl’02 – p.18/18

	Class signer bug (jdk1.1)
	Representation independence
	Representation exposure
	Representation exposure
	Contribution
	Language
	Heap confinement for 	exttt {A}, 	exttt {Rep}
	Confinement
	Simulation
	Main results
	Access control
	Conclusion
	Related work
	Appendix: static confinement
	Appendix: parametricity
	Appendix: Meyer-Sieber
	Appendix: semantic domains

