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Abstract
What we call a “higher-order method” (HOM) is a method
that makes mandatory calls to other dynamically-dispatched
methods. Examples include template methods as in the Tem-
plate method design pattern and notify methods in the Ob-
server pattern. HOMs are particularly difficult to reason
about, because standard pre- and postcondition specifica-
tions cannot describe the mandatory calls. For reasoning
about such methods, existing approaches use either higher-
order logic or traces, but both are complex and verbose.

We describe a simple, concise, and modular approach to
specifying HOMs We show how to verify calls to HOMs
and their code using first-order verification conditions, in a
sound and modular way.

Verification of client code that calls HOMs can take ad-
vantage of the client’s knowledge about the mandatory calls
to make strong conclusions. Our verification technique val-
idates and explains traditional documentation practice for
HOMs, which typically shows their code. However, speci-
fications do not have to expose all of the code to clients, but
only enough to determine how the HOM makes its manda-
tory calls.

Categories and Subject Descriptors D.2.1 [Software En-
gineering]: Requirements/Specifications — languages, me-
thodologies; D.2.4 [Software Engineering]: Software/Pro-
gram Verification — correctness proofs, formal methods,
programming by contract; D.3.3 [Programming Languag-
es]: Language Constructs and Features — classes and ob-
jects, control structures, frameworks, procedures, functions,
and subroutines; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

[copyright notice will appear here]

— assertions, logics of programs, pre- and post-conditions,
specification techniques.

General Terms Languages, Verification

Keywords Model program, verification, specification lan-
guages, grey-box approach, higher order method, mandatory
call, Hoare logic, refinement calculus.

1. Introduction
No program exists in a vacuum. Instead, developers use
components from libraries and frameworks. For example, a
Java programmer may use Swing, Java’s input/output frame-
work, and Jakarta Commons. Such reuse improves produc-
tivity. It can also improve other attributes of software, such
as its performance or maintainability.

The importance of reusable OO components is both a
challenge and opportunity for software engineering. It is an
opportunity because better documentation of such compo-
nents can payoff in productivity and quality.

In this paper we focus on some of reuse’s technical chal-
lenges, namely the specification language design and ver-
ification challenges posed by higher-order methods. For
us, the term higher-order method (HOM) means a method
whose requirements include one or more mandatory calls.
A mandatory call is a method call that must occur under
certain specified conditions. The HOM’s specification de-
scribes how it sequences these mandatory calls, and in what
states these calls are made. A HOM may also make calls that
are not mandatory.

Reasoning about HOMs is a long-standing hard problem
[25, 42]. Our contribution is a practical technique that builds
on the grey-box approach [7, 8, 9]. We show its practical-
ity for sequential Java programs by integrating it with JML
[24, 29], and by showing how to do modular reasoning sim-
ply. For verification of client code, we show how the use of
a copy rule [33] in conjunction with grey-box specifications
allows one to draw strong conclusions. Our verification tech-
niques are explained using a Hoare logic, and we give a new
soundness proof. Remarkably, refinement style reasoning is
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not needed to use the grey-box approach, though refinement
is used in our soundness proof.

In what follows we first give more details on the problem.
Our solution approach is described in Section 3. Section 4
formalizes our approach and gives a soundness proof. After
that, we discuss other issues, future work, and conclude.

2. The Problem
Several standard and important examples of HOMs are
found in common design patterns [18]. These include:

• The Notify method of the Observer pattern, which
makes mandatory calls to the Update method in each
observer object.

• The kind of method described by the Template Method
pattern, which makes mandatory calls to several abstract
“primitive operation” methods in some particular order.

• The HandleRequest method of the Chain of Respon-
sibility pattern, which, if it cannot directly handle a re-
quest, makes a mandatory call to the next such method.
(This illustrates that such mandatory calls need not hap-
pen in every execution, despite the name.)

In addition, clients of methods found in behavioral design
patterns are often HOMs that make mandatory calls to the
pattern’s methods. This includes callers of: the Interpret
method in the Interpreter pattern, the Execute method in
the Command pattern, the Handle method in the State
pattern, the Accept method in the Visitor pattern, and the
strategy method in a strategy object.

As can be seen from the above examples, typically a
mandatory call is both dynamically-dispatched and calls a
method with a weak specification. A method specification
is weak if it does not completely describe the state transfor-
mation that the caller of the HOM cares about, but instead
only states some limited property (such as that a manda-
tory dynamic call will terminate, or that it does not write
to certain fields). For example, in a Java implementation
of the Observer pattern, the actionPerformed method
of a Listener, which corresponds to the Update method
of an observer, has such a weak specification, which al-
lows Listener objects to perform many different tasks. The
code sequencing calls to such methods thus has very weak
dependencies on their effects. Mandatory calls will typi-
cally be dynamically dispatched, because they will typically
be calls to abstract methods. For example, the call to the
actionPerformed method of a Listener object will be
dynamically dispatched.

2.1 Client Reasoning
Because the mandatory calls of a HOM typically have weak
specifications, the HOM’s specification will typically not be
sufficient for client-side reasoning. That is, if a client wants
to know that a call to a HOM accomplishes some specific

state transformation, then the HOM’s weak specification will
generally not be enough to prove what the client wants.

As an example of this problem and of the problem of
integrating with an interface specification language such as
JML, we show a very simple instance of the Observer pat-
tern. First, consider the class Counter, shown in Figure 1,
whose HOM bump is to be observed, and which holds a
single listener to observe it. This class declares two private
fields, count and lstnr. The JML annotations declare
both fields to be spec_public, meaning that they can
be used in public specifications [26]. The field count is
the main state in counter objects. The field lstnr holds a
possibly null Listener object.1 Counter’s register
method has a Hoare-style specification. The precondition is
omitted, since it is just “true.” Its assignable clause gives
a frame axiom, which says that it can only assign to the field
lstnr. Its postcondition is given in its ensures clause.
The figure does not specify the HOM bump, as a major part
of the problem is how to specify such methods.

public class Counter {
private /*@ spec_public @*/ int count = 0;
private /*@ spec_public nullable @*/

Listener lstnr = null;

/*@ assignable this.lstnr;
@ ensures this.lstnr == lnr; @*/

public void register(Listener lnr) {
this.lstnr = lnr;

}

public void bump() {
this.count = this.count+1;
if (this.lstnr != null) {

this.lstnr.actionPerformed(this.count);
}

}
}

Figure 1. A Java class with JML specifications. JML spec-
ifications are written as annotation comments that start with
an at-sign (@), and in which at-signs at the beginnings of
lines are ignored. The specification for method register
is written before its header.

The interface Listener, specified in Figure 2, con-
tains a very weak specification of its actionPerformed
method. Counter’s bump method notifies a listener by
calling actionPerformed. Its specification is weak be-
cause it has no pre- and postconditions. The only thing con-
straint on its actions is given by the specification’s assignable
clause. This clause names this.objectState, which is
a datagroup defined for class Object. A datagroup is a de-
clared set of fields that can be added to in subtypes [29, 31].

The class LastVal, specified in Figure 3 is a subtype
of Listener. Objects of this type track the last value

1 In JML fields are automatically specified to be non-null by default [11,
29], so nullable must be used in such cases.
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public interface Listener {

//@ assignable this.objectState;
void actionPerformed(int x);

}

Figure 2. Specification of the interface Listener.

passed to their actionPerformed method in the field
val. This field is placed in the objectState datagroup
by the in clause following the field’s declaration. Making
val a member of the objectState datagroup allows the
actionPerformed method to update it [29, 31]. Objects
of this class also have a method getVal, which allows Java
code to access the field’s value.

public class LastVal implements Listener {
private /*@ spec_public @*/ int val = 0;
//@ in objectState;

/*@ also
@ assignable this.objectState;
@ ensures this.val == x; @*/

public void actionPerformed(int x) {
this.val = x;

}

//@ ensures \result == this.val;
public /*@ pure @*/ int getVal() {

return this.val;
}

}

Figure 3. The JML specification of LastVal.

With these pieces in place, we can now show a typical
example of client reasoning with the observer pattern. Con-
sider the code in Figure 4. This code creates a LastVal
object lv and a Counter object c. It passes lv to c by
calling c’s register method. Hence, as the second asser-
tion states, the lstnr field of the Counter object c holds
lv. This sets the stage for calling c’s HOM bump.

LastVal lv = new LastVal();
//@ assert lv != null && lv.val == 0;
Counter c = new Counter();
c.register(lv);
//@ assert c.lstnr == lv && lv != null;
//@ assert c.count == 0;
c.bump();
//@ assert lv.val == 1;

Figure 4. A Java example that draws a strong conclusion
(the assertion in the last line) about a call to the HOM bump.

The call to bump increments c’s count field to 1, and
then passes 1 to lv’s actionPerformed method. This
causes lv to store 1 in its field val, which makes the last
assertion in Figure 4 hold. The problem we address is how to
write modular specifications that enable modular and static
verification of such assertions.

For proving the last assertion in Figure 4, a normal Hoare-
style specification for Counter’s method bump, such as
the one shown in Figure 5, is not sufficient. The problem

//@ assignable this.count, lstnr.objectState;
//@ ensures this.count == \old(this.count+1);
public void bump();

Figure 5. A standard JML specification for bump.

with using Figure 5 to prove assertions like the last one in
Figure 4 is that Figure 5 does not say anything about the
particular state change that may occur in the lstnr object.
Furthermore, a first-order specification like this has no way
to even say that the mandatory call is made.

Proving such an assertion requires that the specification
talk about the mandatory call and that there is some way to
use the specification from LastVal to reason about that
call. Thus bump must be specified so that the caller can use
a specification like the one in LastVal, even though mod-
ularity prohibits Counter from knowing anything about
LastVal.

2.2 Related Work
Several solutions to this problem of how to modularly rea-
son about HOMs have appeared previously in the literature,
albeit not dealing with OO issues like behavioral subtyping.

Ernst, Navlakha, and Ogden [15] use higher-order logic
to handle such problems. As shown in Figure 6, one would
use pre and post to refer to the pre- and postcondi-
tions of called methods.2 However, this technique makes
bump’s specification more complex and involved than its

/*@ requires this.lstnr != null
@ ==> this.lstnr.actionPerformed
@ .pre(this.count);
@ assignable this.count, this.lstnr.objectState;
@ ensures this.lstnr != null
@ ==> (this.count == \old(this.count+1)
@ && this.lstnr.actionPerformed
@ .post(\old(this.count),
@ this.count)); @*/

public void bump();

Figure 6. A specification in the style of Ernst, et al. [15] for
bump.

code. Furthermore, verification takes place in a higher-order
logic, since the specification of bump takes a description of
actionPerformed as a parameter, and thus quantifies
over function or predicate symbols. This makes automated
verification difficult, as most theorem provers for higher-
order logic are interactive. Besides these shortcomings, their
work does not technically require the function object to be
called by an implementation, only that the effect specified
by the parameter be achieved.

2 Similarly, Damm and Josko [12] allow use of Hoare triples as predicates
on procedure parameters.
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Findler and Felleisen also use higher-order logic to de-
scribe higher-order contract checking [16]. Their contract
language is able to express contracts for HOMs, including
examples such as the Observer pattern. However, they focus
on techniques for producing helpful error messages (blame
assignment) and run-time checking of contracts. Thus, in
comparison to our work, they have a more complex language
for HOM contracts and they do not investigate static verific-
tion (such as how do draw strong conclusions about calls to
HOMs).

Soundarajan and Fridella [42] solve the problem of mak-
ing sure that a higher order method actually makes the
mandatory calls by writing specifications that track a trace
of method calls. For example, Counter’s bump method
could be specified in their style as shown in Figure 7. In
this figure, the trace, τ has one element, which is a call to
lstnr’s actionPerformed method (which would have
to be declared as a “hook method”, hence the notation “.hm”
for retrieving the name of this method from the trace). Us-
ing Soundarajan and Fridella’s “Enrichment Rule” (R2), one
can prove assertions like the last one in Figure 4, by using
knowledge of the value of the field lstnr, and the spec-
ification in LastVal. However, writing such trace-based

epre.Counter.bump() ≡ [τ = ε]
epost.Counter.bump() ≡

[(this.lstnr 6= null) ⇒
((|τ | = 1)
∧ (τ [1].hm

= this.lstnr.actionPerformed))]
∧ [(this.lstnr = null) ⇒ τ = ε]

Figure 7. A specification in the style of Soundarajan and
Fridella [42] for bump.

specifications is still not very intuitive for programmers, es-
pecially when they involve sequencing several calls. Also,
reasoning about such specifications involves intricate proofs
about traces. For example, Soundarajan and Fridella’s paper
spends about 8 pages to describe a case study of specifying
and verifying a single HOM (for bank accounts) [42, pages
321–329].

Büchi and Weck’s “grey-box” approach [7, 8, 9], is a sim-
pler way to specify such HOMs. We build on and adapt
their work in this paper, integrating it with JML. In their
work, specifications of HOMs are written as abstract pro-
grams, which in JML are called model programs. A model
program exposes information about the method’s mandatory
calls, while hiding some details. Details can be hidden by
using specification statements in the model program to de-
scribe the effect of the hidden code. As we will show, the
resulting sequence of hidden behaviors and exposed manda-
tory calls allows variation in implementations while permit-
ting clients to draw strong conclusions. Büchi and Weck also

did not explain a practical technique for verifying that an im-
plementation of a HOM satisfies a model program specifica-
tion, nor did they give a verification rule for client reason-
ing. Our paper’s contribution is a solution to these technical
problems, a new soundness proof, and a practical adaptation
to JML.

Barnett and Schulte [5] support run-time verification of
model programs in the .NET environment. Their model pro-
grams are similar to ours in spirit, although expressed in
AsmL. Their work, like ours, addresses the specification and
checking of HOMs with mandatory calls. Their contribution
is a technique for checking conformance of a running im-
plementation, even when the specification may involve non-
determinism. For simplicity, in this paper we only consider
model programs with limited syntactic support for nonde-
terminism, although it is present, due to the ability to write
specification statements. Finally, instead of run-time check-
ing we seek to provide static guarantees.

3. Solution Approach
Our solution approach relies on grey-box, model program
specifications [7, 8, 9] and uses a copy rule [33] to reason
about calls to HOMs specified with model programs.

A model program specification for Counter’s HOM
bump is shown in Figure 8. In this figure, the publicmodi-

/*@ public model_program {
@
@ normal_behavior
@ assignable this.count;
@ ensures this.count == \old(this.count+1);
@
@ if (this.lstnr != null) {
@ this.lstnr.actionPerformed(this.count);
@ }
@ }
@*/

public void bump();

Figure 8. Model program that specifies the mandatory call
to the actionPerformed method.

fier says that this specification is intended for client use [26].
The keyword model_program introduces the model pro-
gram. Its body contains a statement sequence consisting of
a specification statement followed by an if-statement. The
specification statement starts with normal_behavior
and includes the assignable and ensures clauses.
Specification statements can also have a requires clause,
which would give a precondition; in this example the precon-
dition defaults to “true.” A specification statement describes
the effect of a piece of code that would be used at that place
in an implementation. Such a piece of code can assume the
precondition and must establish the postcondition, assigning
only to the datagroups permitted by its assignable clause.
Thus specification statements can hide implementation de-
tails and make the model program less specific. Although

4 2007/8/21



the example uses a specification statement in a trivial way,
they can be used to abstract arbitrary pieces of code, and
have been used to do so in the refinement calculus [2, 34].

Our approach prescribes how to do two verification tasks:

• Verification that a HOM implementation satisfies a model
program specification. Our approach imposes verifica-
tion conditions on the code by first “matching” the code
against the model program, which yields a set of verifi-
cation conditions for parts of the code that implement the
model program’s specification statements.

• Verification of calls to HOMs specified with model pro-
grams. Our approach uses a verification rule that copies
the model program to the call site, with appropriate sub-
stitutions. The caller can then draw strong conclusions
using a combination of the copied specification and the
caller’s knowledge of the program’s state at the call site.
In particular, at the site of the mandatory calls made
by the substituted model program, the client may know
more specific types of such calls’ receivers. These more
specific receiver types may have stronger specifications,
which client reasoning can exploit.

3.1 Verifying Implementations
Verification of implementation code takes place in two steps.

The first step is matching, which checks whether code
has the form specified by the model program. The matching
we use in verifying that code satisfies a model program
is simple, requiring exact matches except where the model
program contains a specification statement. A specification
statement can only be matched by a refining statement,
which must have the same specification as the specification
statement.

In our example, bump’s code in Figure 9 matches the
model program in Figure 8. This is because the refining
statement in the code matches the specification statement in
the model program, and the call to actionPerformed in
the code matches the same (mandatory) call in the model
program. Thus each piece of the code matches a correspond-
ing piece of the model program. Note that bump’s code in
Figure 1 does not match, since it has no refining statement.

public /*@ extract @*/ void bump() {
/*@ refining normal_behavior

@ assignable this.count;
@ ensures this.count == \old(this.count+1);
@*/

this.count = this.count+1;

if (this.lstnr != null) {
this.lstnr.actionPerformed(this.count);

}
}

Figure 9. Code matching the model program specifica-
tion for Counter’s actionPerformed method. The
extract syntax is explained in Section 3.3.

The second stage is a proof that each refining statement
in the code implements its specification. That is, one must
check that, assuming the specification statement’s precondi-
tion, the body of the refining statement achieves the specifi-
cation’s postcondition and only assigns to the fields permit-
ted by its frame. Since all other matches are exact, this is
sufficient to show that the code must refine the model pro-
gram. It also ensures that the mandatory calls occur in the
implementation in the specified states.

In our example, the specification statement has no pre-
condition, and so one simply has to prove that the code’s
assignment this.count = this.count+1 meets the
postcondition and only assigns to this.count. This proof
is straightforward.

Despite its simplicity, our technique is practical. In par-
ticular, it allows programmers to trade the amount of ef-
fort they invest in specification and verification for flexibility
in maintenance. Programmers writing abstract specifications
that hide some details gain the ability to change code that
implements those specifications. Conversely, programmers
can choose to avoid most of the overhead of specification
and verification and simply use the code for a HOM as a
(white-box) specification, with the obvious loss of flexibility
in maintenance. The only details that our technique forces
programmers to reveal are the mandatory calls for which
client-side reasoning is to be enabled and the control struc-
tures surrounding such calls. For all other details the choice
is left to them and is not dictated by our technique.

3.2 Client Reasoning
Our technique for verification of calls to HOMs with model
program specifications, client reasoning, can reach strong
conclusions without the use of higher-order logic or traces
in specifications. As mentioned above, it uses a copy rule
[33], in which the body of the model program specification is
substituted for the HOM call at the call site, with appropriate
substitutions.3

For example, to reason about the call to c.bump() in
Figure 4, one copies the body of the model program speci-
fication to the call site, substituting the actual receiver c for
the specification’s receiver, this. This produces the code
shown in Figure 10.

From the code shown in Figure 10 it is easy to verify
the final assertion, since the call to actionPerformed
is present. Thus the client can continue reasoning by us-
ing the assignable clause of the specification statement
to show that, just before the call to actionPerformed,
c.lstnr == lv. This allows the client to use the speci-
fication of actionPerformed from Lastval to prove
the final assertion.

3 The copy rule can be used repeatedly to verify recursive calls, as long as
there is a way to limit the depth of recursive copying for each use. We do
not provide a rule for determining such limits.
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LastVal lv = new LastVal();
//@ assert lv != null && lv.val == 0;
Counter c = new Counter();
c.register(lv);
//@ assert c.lstnr == lv && lv != null;
//@ assert c.count == 0;
/*@ normal_behavior

@ assignable c.count;
@ ensures c.count == \old(c.count+1);
@*/

if (c.lstnr != null) {
c.lstnr.actionPerformed(c.count);

}
//@ assert lv.val == 1;

Figure 10. Result of substituting the model program’s body
for the call c.bump() from Figure 4.

The reason this approach works well for clients is that
their reasoning does not have to rely on a weak, pre- and
postcondition specification of the HOM or the very weak
specification of its mandatory calls. Instead clients can use
the model program and their knowledge of (stronger) specifi-
cations for the actual mandatory calls. Thus clients reasoning
can use their knowledge of specific arguments to the HOM,
or the states and types of objects, to draw strong conclusions.

3.3 Extraction of Model Programs from Code
Due to matching, model program specifications necessarily
duplicate all of the implementation code that is not hidden
by specification statements. This duplication introduces the
possibility of errors and is a maintenance headache.

However, the ability to keep model program specifica-
tions separate from the code they specify is useful in two
cases. The first is when there is no code, i.e., for an abstract
method. The second is when the code cannot be changed at
all, e.g., when the code is owned by a third party.

If the specification does not have to be kept separate from
the code, we can avoid the problems of duplication by writ-
ing the code and the specification together. An example of
how this would be done is shown in Figure 9. The method
modifier extract says to extract the specification from the
code. The extraction process forms a model program speci-
fication, in this case the one shown in Figure 8, by taking the
specification of each refining statement as a specifica-
tion statement in the model program (thus hiding its imple-
mentation part), and by taking all other statements as writ-
ten in the code. This extracted model program automatically
matches the code.

Figure 9’s use of extract is syntactic sugar for writing
the specification shown in Figure 8. The specification shown
in Figure 8 would be what a specification browsing tool
would show to readers, even if the specification was written
in the code as in Figure 9.

3.4 Template Method Example
We have worked several nontrivial examples to validate our
approach, and they worked beautifully. However, due to lack
of space, we can only present one of these, an instance of the
Template Method design pattern [18].

Template methods are HOMs that are used in frame-
works, where they sequence calls to “hook methods” that
are overridden (customized) by the framework’s users. Typ-
ically the hook methods have weak specifications. The tem-
plate method makes mandatory calls to these hook methods,
which works very well with model program specification.

As an example, consider the HOM prepare in Fig-
ure 11. The model program specification extracted from the

import java.util.Stack;

public abstract class CakeFactory {
public /*@ extract @*/ Object prepare() {

Stack pan = null;

/*@ refining normal_behavior
@ assignable pan;
@ ensures pan.isEmpty(); @*/

pan = new Stack();

this.mix(pan);
this.bake(pan);
return pan.pop();

}

//@ requires items.size() == 0;
//@ assignable items.theCollection;
//@ ensures items.size() == 1;
public abstract void mix(Stack items);

//@ requires items.size() == 1;
//@ assignable items.theCollection;
//@ ensures items.size() == 1;
public abstract void bake(Stack items);

}

Figure 11. The class CakeFactory, with its template
method prepare, and two hook methods: mix and bake.

method prepare is shown in Figure 12. This model pro-
gram has two mandatory calls to the weakly specified hook
methods: one each to mix and bake.

/*@ public model_program {
@ Stack pan;
@
@ normal_behavior
@ assignable pan;
@ ensures pan.isEmpty();
@
@ this.mix(pan);
@ this.bake(pan);
@ return pan.pop();
@ } @*/

public Object prepare();

Figure 12. The extracted specification for prepare.
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A specializer, like StringyCake in Figure 13, supplies
code and stronger specifications for the hook methods.

import java.util.Stack;

public class StringyCake extends CakeFactory {

/*@ also
@ requires items.size() == 0;
@ assignable items.theCollection;
@ ensures items.size() == 1
@ && items.peek().equals("batter");
@*/

public void mix(Stack items) {
items.push("batter");

}

/*@ also
@ requires items.size() == 1
@ && items.peek().equals("batter");
@ assignable items.theCollection;
@ ensures items.size() == 1
@ && items.peek().equals("CAKE");
@*/

public void bake(Stack items) {
items.pop();
items.push("CAKE");

}
}

Figure 13. StringyCake, a subclass of CakeFactory.
The keyword also indicates that the given specification is
joined with the one it overrides [23, 27].

A client of StringyCake would be able to use the
model program specification of prepare and the specifica-
tions of the hook methods to prove the assertion in Figure 14.
This works because the client can substitute the model pro-
gram specification for the call to prepare, which allows
use of the extended specifications for the hook methods.

CakeFactory c;
Object r;
c = new StringyCake();
r = c.prepare();
//@ assert r.equals("CAKE");

Figure 14. Client code that uses prepare.

The result of substituting the actuals into the model pro-
gram from Figure 12 for the call to the prepare method
is shown in Figure 15. In this substitution, we have changed
the return in the code into the assignment to the variable re-
ceiving the call’s value, as usual [41]. From Figure 15, it is
straightforward to prove the final assertion, taking advantage
of the fact that c is an instance of StringyCake and the
specifications of its hook methods.

4. Formalization of Reasoning with Model
Programs

This section formalizes the two kinds of verification de-
scribed above: verification of the correctness of methods

CakeFactory c;
Object r;
c = new StringyCake();
{

Stack pan = null;

normal_behavior
assignable pan;
ensures pan.isEmpty();

c.mix(pan);
c.bake(pan);
r = pan.pop();

}
//@ assert r.equals("CAKE");

Figure 15. Client code that uses prepare, after using the
copy rule and substituting the actual receiver c for this.

against model program specifications and verifications of
calls to such methods. To precisely investigate their sound-
ness, we first give details of the subset of JML we study, and
then formalize matching and the Hoare logic for this lan-
guage.

4.1 Model Program Language
We study a subset of Java enriched with a subset of JML
specification constructs. Except for model program speci-
fications, this subset is essentially that of Core JML [28],
which has classes and interfaces. Classes can declare fields
and methods; we do not consider JML’s model fields or
invariants. Model fields could be simulated with JML’s
specification-only ghost fields, which Core JML handles,
but we omit them from this paper’s formal treatment, as they
are orthogonal to our main concerns; likewise for interfaces.
The remainder of this paper focuses on methods and their
specifications.

Our subset of JML allows two kinds of method specifica-
tions. A method may have either a Hoare-style pre- and post-
condition specification or a model program specification.
For simplicity, we ignore frame axioms (JML’s assignable
clause) in the formalism (they can be encoded in postcondi-
tions), and we concentrate on partial correctness.

A grammar for the subset of JML model programs that we
formalize is shown in Figure 16. Examples, such as the one
in Figure 12 were shown with JML-style annotation com-
ments and the full JML syntax, but our formalism ignores
these lexical details as well JML’s visibility modifiers for
method specifications. We use the abbreviation spec(P,Q)
for a JML specification statement with precondition P and
postcondition Q. We also write refining P,Q as S for a
refining statement with precondition P , postconditionQ and
body S.

Statements (S,S) in Figure 16 include both the statements
that can appear in model programs and the code statements
that can appear in method bodies. However, we do not allow
refining statements to appear in model programs and we do
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MD : : = “method declarations”

MS voidm(
−→
T x) S

MS : : = “method specification”
requires P; ensures Q; “requires-ensures”
model_program S “model program”

S,S : : = “JML statement”
; “skip”
| x = E; “assignment”
| x.m(~x); “method call”
| {D S} “block”
| S1 S2 “sequence”
| if (x) S1 else S2 “if”
| spec(P,Q) “specification”
| refining P,Q as S “refining”

D : : = “declaration”
T x; “local of type T ”
| D∗ “simultaneous”

E,P,Q : : = “expression”
this | x | x1.x2 | x0.m(~x) | new T(~x)
| x1 == x2 | x1 < x2 | x1 && x2 | x1 ‘||’ x2

| ! x | x1 + x2 | x1 % x2 | . . .
| \old(E)

Figure 16. A core JML grammar for model programs. The
nonterminal T stands class names and primitive types, and x
stands for identifiers.

not allow specification statements to appear in method bod-
ies. Refining statements are also not allowed in the bodies of
refining statements.

We sometimes use S for statements in model programs,
in contexts where S is used only for code. However, to avoid
duplication of definitions, we do not technically define two
different syntactic categories.

To avoid complications arising from specifications that
may fail to terminate, method calls and new object construc-
tions are not allowed in requires and ensures clauses.

4.2 Structural Similarity from Matching
Matching an implementation against a model program is
straightforward. The matches predicate merely checks that
the code could have had the model program extracted from
it, as would be done if the extract keyword had been
used. So matches is defined using an operator extract, which
takes a statement and recursively replaces each refining
statement with the specification statement it contains. This
(very simple) algorithm is given in Figure 17.

As can be seen in Figure 17, statements match only
against themselves, with the exception of statements that
contain refining statements, which can only match specifi-
cation statements. For example, the statement that forms the

matches :S × S → Boolean
matches(S,S′) = (extract(S) = S′)

extract :S → S
extract(refining P,Q as S) = spec(P,Q)
extract({D S}) = {D extract(S)}
extract(S1 S2) = extract(S1) extract(S2)
extract(if (Et) St else Sf )

= if (Et) extract(St) else extract(Sf )
extract(S) = S (if none of the above cases apply)

Figure 17. Definition of when a code statement matches the
statement of a model program, which is built on a definition
of how to extract a model program from code. The “=”
notation used to compare statements means textual equality.

body of the bump method shown in Figure 9 matches the
model program given in Figure 8.

This definition of matches allows specification statements
to match themselves. However, because specification state-
ments do not appear in normal code, but only in model pro-
gram specifications, this does not matter for matching.

4.3 Verification and its Soundness
In this section we formalize our verification technique in the
manner of Hoare logic. Section 4.3.1 gives proof rules, fo-
cusing on the rule for client reasoning and the rule for ver-
ifying method implementations with respect to model pro-
gram specifications. In order to justify these rules with actual
behavior of programs, we first define a semantics for ordi-
nary statements (without specification statements) as state
transformers (Section 4.3.2). Then we define a predicate
transformer semantics for the language extended with spec-
ification statements (Section 4.3.3). Finally, Section 4.3.4
uses the semantics to define notions of satisfaction and Sec-
tion 4.3.5 shows soundness of the proof rules for statements
and for complete programs.

Notations and judgments used in the formalism are sum-
marized in Figure 18.

4.3.1 Verification Logic
As in our Core JML formalism [22, 28], we let Γ range over
typing assignments, which are maps from variable names to
types. The judgment Γ ` S says that S is well formed in
the context Γ and the class table CT . The class table CT
is implicit, and can be thought of as a compiled version of
the program’s class-level declarations. In particular, for a
method in class T with parameters ~x : ~U , its body will be
type checked in context this :T, ~x : ~U . (We only consider
void-returning methods, for simplicity.)

Hoare triples are found in judgments of the following
form Γ ` P {S} Q. Such a judgment means that if P
holds, and if the statement S terminates normally, then Q
is true in its post-state. Such a judgment is well-formed if
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CT class table (declarations)
Γ type assignment
Γ ` S S is well formed
Γ ` E :T E has type T
T ′ ≤ T T ′ is subtype of T
mtype(T,m) type of method m in class T
Γ ` P {S} Q Hoare triple is derivable
ST specification table
re(P,Q) requires-ensures method spec.
mp(S) model program method spec.
Γ ` S sat ST (T,m) S satisfies T.m’s spec.
matches(S,S) S matches model program S
CT ` ST declarations provably correct
µ method environment
[[Γ ` S]] state transformer semantics
{|Γ ` S|} predicate transformer semantics
wlp weakest liberal precondition
σ↓ϕ {σ′ | (σ, σ′) ∈ ϕ}
µ |= P {S} Q P {S} Q is valid in µ
µ |= ST ST is valid in µ
f v g f is refined by g

Figure 18. Summary of notations and judgment forms. The
type assignment Γ is sometimes omitted if clear from con-
text, e.g., [[S]] instead of [[Γ ` S]].

Γ ` S, and if the precondition P is also well formed in
Γ, and if the postcondition Q is also well formed. Well-
formedness of Q allows its “\old” expressions to refer to
the statement’s initial state. (For Q used as postcondition
in a method specification, occurrences of this and of the
parameters are implicitly treated as if inside “\old” so they
have a sensible interpretation at invocation sites.) The formal
rules apply only to well formed correctness statements, but
for brevity we sometimes we omit the context Γ.

There is some variation among logics and verification
systems about how the heap is modeled, and this affects the
rules for field update and object construction (at least). For
example, the Jive system [35, 40] uses an explicit global
variable that stands for the heap, and the field assignment
rule uses an update expression for the heap; ESC/Java [17]
and Spec# [4] encode the heap as a collection of arrays, one
per field, and treat field assignment as array update; de Boer
and Pierik [13, 39] use another approach and Parkinson [38]
yet another (separation logic). Our results do not depend
on such particulars of the assertion language or proof rules,
with the exception of the rules for method invocation and the
rules for verifying method implementations. We refrain from
stating a rule for field update and also omit the standard rules
[20] for assignment, control structures, consequence, etc.

The key rules appear in Figure 19, which we explain
below.

Specification statements do not occur in method imple-
mentations but they occur in model programs and therefore

(SPEC STMT)

Γ ` P {spec(P,Q)} Q

(REF)
Γ ` P {S} Q

Γ ` P {refining P ′, Q′ as S} Q

(MCALL)
ST (T ′,m) = re(P ′, Q′)

Γ ` x :T T ′ ≤ T mtype(T ′,m) = ~y : ~T→void
P = P ′[x, ~x/this, ~y] Q = Q′[x, ~x/this, ~y]

Γ ` P && x instanceof T ′ {x.m(~x);} Q

(HOCALL)
ST (T ′,m) = mp(S′)

mtype(T ′,m) = ~y : ~T→void this :T ′, ~y : ~T ` S′
T ′ ≤ T S′ does not assign to ~y

S = S′[x, ~x/this, ~y] Γ, x :T ′ ` P {S} Q
Γ, x :T ` P && x instanceof T ′ {x.m(~x);} Q

(CLASS TABLE)
for all (T,m) in CT :

if class T declares m with body S
and mtype(T,m) = ~y : ~T→void
then this :T, ~y : ~T ` S sat ST (T,m)

CT ` ST

(SAT RE)
ST (T,m) = re(P,Q) Γ ` P {S} Q

Γ ` S sat ST (T,m)

(SAT MP)
ST (T,m) = mp(S) matches(S,S)

for all (Γ′ ` refining P,Q as S′) in S: Γ′ ` P {S′} Q
Γ ` S sat ST (T,m)

Figure 19. Selected proof rules. Subtyping is written ≤.

in the antecedent of rule (HOCALL) so our logic needs a rule
for them. Rule (SPEC STMT) is straightforward [2, 34].

Rule (MCALL) is an ordinary rule for method call.4 It is
similar to the rule (SPEC STMT) in that the pre- and post-
condition are obtained directly from the specification given
by the program’s specification table, ST .

The specification table, ST , is fixed for a given pro-
gram. It maps a pair consisting of a class type and a method
name to that method’s specification. The specification ta-

4 Some logics use more complicated “adaptation rules” for recursive proce-
dure calls [21, 37], but adaptation is needed for auxiliary variables which
we omit in favor of the “\old” notation. So, for reasoning about recursive
calls, the substitutions in rule (MCALL) suffice.
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ble contains two kinds of specifications: pre-/post-condition
(requires/ensures) pairs, written re(P,Q), and model pro-
gram specifications, written mp(S). The (MCALL) rule is
only used for calls where the specification table contains a
pre-/postcondition pair.

In JML, occurrences of parameters and this in a post-
conditionQ′ are interpreted to refer to the initial state, which
is why straightforward substitutions account for parameter
passing in rule (MCALL). Note that the assumed type T ′ of
the receiver must be a subtype of the static type of x, other-
wise the precondition would be ill formed. When T ′ = T ,
the condition x instanceof T ′ is trivially true and can be
omitted. (Note that in Java mtype(T ′,m) = mtype(T,m).)

Of course, rule (MCALL) relies on behavioral subtyping
[1, 32]: the method implementation dispatched according to
the receiver’s dynamic type must satisfy the specifications of
its supertypes [14, 23, 27, 30].

ASSUMPTION 4.1. The specification table, ST , has behav-
ioral subtyping, i.e., for all classes T, T ′ with T ≤ T ′, and
all methodsm declared or inherited in T ′, ST (T,m) refines
ST (T ′,m).

In Section 4.3.4 we formalize the notion of refinement with
which the assumption can be made precise, but this is not a
central issue in this paper and we do not dwell on it.

In the (HOCALL) rule, the antecedent this :T ′, ~y : ~T `
S′ says that the model program’s body S′ type checks in a
type context appropriate for the method’s type.5 This en-
sures that the substitution S′[x, ~x/this, ~y] that produces
S is well-typed. (Substitution renames locals to avoid cap-
ture.) Note that the antecedent Γ, x :T ′ ` P {S} Q uses
the type context Γ with the receiver x’s type changed to T ′.
This change of x’s type is necessary because S′ type checks
with this :T ′. Assignments to parameters are disallowed,
without loss of generality, as usual in proof systems.

Rules (MCALL) and (HOCALL) are to be used for reason-
ing about both invocations by clients and recursive invoca-
tions within method declarations. By contrast, some Hoare
logics include a separate rule for verifying the implementa-
tion of a recursive procedure, which is allowed to assume the
correctness of the procedure for recursive invocations. Since
rules (MCALL) and (HOCALL) take for granted that the in-
voked method satisfies its specification, we also formalize
the obligation to verify every method implementation, using
three more rules.

We use the judgment CT ` ST to signify that every
method implementation in every class satisfies its specifi-
cation. We say that P {S} Q is derivable iff it has a proof
using the rules discussed earlier, and P {S} Q is provable
iff it is derivable and moreover CT ` ST can be derived
using rule (CLASS TABLE)

5 This is best viewed as a well-formedness condition on ST , and the same
for assignment to ~y. We include these in the rule only for clarity.

The judgment “S sat ST (T,m)” says that S satisfies its
specification. (Its semantics is given later, by Definition 4.7.)
In the case of ordinary requires/ensures specifications, the
rule (SAT RE) requires that statement S is verified in the
usual way. Here S could be any statement, but the only use
for rule (SAT RE) is for method bodies in the antecedent of
rule (CLASS TABLE). Note that in the derivation of P {S} Q
one can use the method call rules.

In case ST (T,m) is a model program specification of
the form mp(S), rule (SAT MP) says that an implementation
S must match S and for each sub-statement in S of the
form refining P,Q as S′, the statement S′ must satisfy
specification P,Q. In the rule, each typing context Γ′ is
determined by the surrounding declarations.

Rule (REF) for the refining statement is a bit surprising.
This rule ignores the refining statement’s predicates, P ′ and
Q′, and instead only requires one to prove P {S} Q. The
reason this rule can ignore P ′ and Q′ is that execution of
a refining statement just executes its body, S. However, if
such a statement is used in a method with a model program
specification, then a proof that S satisfies P ′ {S} Q′ will be
required as part of the (SAT MP) rule.

4.3.2 State Transformer Semantics
To prove soundness of the Hoare logic described above, we
need an independent semantics. We present a denotational
semantics in this subsection. One reason for using such a
semantics is that it is a good match for our Hoare logic, in
which reasoning about method calls is based on their spec-
ifications. The denotational semantics is similarly composi-
tional. For this purpose we adopt an existing denotational
semantics of Java/JML [28], which is based on earlier work
[3, 36].

In this section we let S range over method body (code)
statements, excluding specification statements.

We write State(Γ) for the set of program states appro-
priate for the typing context Γ. Each such state consists of
a heap of objects together with a mapping of the variables
declared in Γ to values. We consider only states that are well
formed in the sense that every object reference that occurs as
the value of a variable or in an object field is in the domain
of the heap, and all field and variable values are type correct.

A statement S in context Γ denotes a state transformer,
i.e., a (total) function from State(Γ) to State(Γ) ∪ {⊥}
where⊥ represents divergence or runtime error. Note that⊥
is not a state. Because S can invoke methods, its semantics
is defined in terms of a method environment µ that gives the
denotations of all methods on receivers of all classes. Ulti-
mately we are interested in a particular method environment,
namely the one, written µ̂, denoted by the class table CT as
described below.

The semantics of method call x.m(~x) first checks if the
receiver x is null, in which case the result is ⊥. Otherwise,
the value of x is an object of some runtime type T . The state
transformer denoted by the body of the method m declared
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or inherited in T is given by µ(T,m), and the semantics
of the call simply applies this state transformer to a state
where this is mapped to the value of x and parameters ~y
are mapped to the values of ~x.

The denotation of a statement S that type checks in
context Γ, written [[Γ ` S]], is defined in terms of an arbi-
trary µ, so that [[Γ ` S]](µ) is a function from State(Γ) to
State(Γ) ∪ {⊥}. For given µ, the definition of [[Γ ` S]](µ)
goes by induction on the structure of S. It is entirely straight-
forward and most of the details are not relevant here. We
define the semantics for “refining” statements as follows:

[[Γ ` refining P,Q as S]](µ) = [[Γ ` S]](µ)

Recall that the specification part is only present to make the
connection with a corresponding specification statement in a
model program specification.

Specification statements only occur in model programs
and their semantics is given in Section 4.3.3.

Some work is needed to define a method environment,
µ̂, that models the semantics of the class table. This is done
by taking the least upper bound, in a straightforward order-
ing,6 of a countable sequence of approximate method envi-
ronments µi. For each i, the semantics [[Γ ` S]](µi) accu-
rately models an operational semantics for S in which the
method call stack is bounded in depth by i, with outcome ⊥
if the depth is exceeded. The limit, µ̂, models an operational
semantics with unbounded calling stack.

In detail, define µ0 to interpret every method as the
everywhere-⊥ function. For i ≥ 0, construct µi+1 as fol-
lows: for each class T and method named m with body S
in T , the meaning of the method in µi+1 is given by S in
terms of µi, that is: µi+1(T,m) = [[S]](µi). In case m is
inherited in T from some superclass T ′, µ(T,m) is defined
to be µ(T ′,m). (Owing to this treatment of inheritance, the
method call semantics can simply look up in the environ-
ment the method meaning associated with the dynamic type
of the receiver.)

For any terminating computation, there is some finite
maximum size of the calling stack, and this is reflected in
the fact that for any S and any σ there is some i such that

[[S]](µ̂)(σ) = [[S]](µj)(σ) for all j ≥ i (1)

Hence if S is the body of m in T then µ̂(T,m) = [[S]](µ̂).
We now define a semantics for Hoare triples. We write

Pred(Γ) for the powerset of State(Γ), noting that ⊥ is not
a state and therefore not an element of any ϕ ∈ Pred(Γ).
For P well formed in Γ, written Γ ` P , we write [[Γ ` P ]]
for its denotation, which is an element of Pred(Γ). This
is consistent with the semantics [[Γ ` E]] of expressions; a
boolean expression maps states to true or false, which can be

6 State transformers are ordered, as usual, by the pointwise order on func-
tions, with respect to the order with states incomparable and ⊥ less than
every state. That is, f ≤ g iff forall σ, if f(σ) 6= ⊥ then f(σ) = g(σ).

seen as the characteristic function of a set. We assume that
pre- and post-conditions never evaluate to ⊥. The semantics
of boolean expressions is straightforward, and our results do
not depend on the particular syntax of assertions.

A postcondition Q can refer to both initial and final state,
and we overload notation to write [[Q]] for the subset of
State(Γ) × State(Γ) denoted by Q. We omit details, but
recall in the case of method specifications, some desugaring
is needed so that mention of this and method parameters
in Q refer to the initial state, so that rule (MCALL) is sound.

DEFINITION 4.2 (valid triple). Let µ be a method environ-
ment. Then P {S} Q is valid for µ iff

for all σ, σ′ ∈ State(Γ),
if σ ∈ [[P ]] and σ′ = [[S]](µ)(σ), then (σ, σ′) ∈ [[Q]]. (2)

Note that this is partial correctness, because it imposes no
constraint in case [[S]](µ)(σ) = ⊥ since ⊥ is not a state and
σ, σ′ range over states.

This definition is our touchstone, since it is the standard
meaning of partial correctness specifications and it is based
on a semantics that is essentially operational, in the sense
that it describes directly how each construct manipulates
the program states. However, this semantics is written in a
denotational style.

4.3.3 Predicate Transformer Semantics
Definition 4.2 has one limitation: for client reasoning, for-
malized by the rule (HOCALL), we need Hoare triples for
model programs. Since model programs may contain speci-
fication statements, a deterministic state transformer seman-
tics would be insufficient. It is convenient to use predicate
transformers which are a standard model for refinement cal-
culi [2]. Ours is a weakest liberal precondition (wlp) seman-
tics, for partial correctness.

Since the meaning of a specification statement is only
needed during client reasoning, predicate transformer se-
mantics is only needed at the level of statements, not at
the level of method environments. Hence mutual recursion
among methods does not need to be directly addressed in
the predicate transformer semantics.

The predicate transformer semantics of S with respect to
method environment µ is written {|Γ ` S|}(µ). We continue
to interpret methods as state transformers, hence the use of
the same kind of method environment as defined earlier.

For function f :State(Γ) → State(Γ) ∪ {⊥}, de-
fine the semantic weakest liberal condition function,
wlp(f) :Pred(Γ) → Pred(Γ), by

σ ∈ wlp(f)(ϕ) iff f(σ) = ⊥ or f(σ) ∈ ϕ.

for all σ ∈ State(Γ) and ϕ ∈ Pred(Γ).
For all primitive statements S, other than specification

statements, we define {|Γ ` S|}(µ) by

{|Γ ` S|}(µ) = wlp([[Γ ` S]](µ)) (3)
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In particular, (3) applies in case S is a method invocation.
This is why the predicate transformer semantics can be de-
fined in terms of ordinary method environments, rather than
storing predicate transformers in the method environment
(as in [10]). Equation (3) turns out to hold for all S without
specification statements, because we adopt the usual seman-
tic definitions for control structures:

• {|Γ ` S1;S2|}(µ)(ϕ) = {|Γ ` S1|}(µ)({|Γ ` S2|}(µ)(ϕ))
• {|if (E) S1 else S2|}(µ)(ϕ)

= ([[E]] ∩ {|S1|}(µ)(ϕ)) ∪ ([[!E]] ∩ {|S2|}(µ)(ϕ))

As in the state transformer semantics, the meaning of a
refining statement is given by its body:

{|Γ ` refining P,Q as S|}(µ) = {|Γ ` S|}(µ)

It remains to define the semantics for specification state-
ments. Define, for all typing contexts Γ, for all µ, for all
ϕ in Pred(Γ), and for all σ and σ′ in State(Γ):

σ ∈ {|Γ ` spec(P,Q)|}(µ)(ϕ)
iff σ ∈ [[P ]] ∧ (∀σ′ : (σ, σ′) ∈ [[Q]] ⇒ σ′ ∈ ϕ) (4)

To define the meaning of Hoare triples we need one
more technical ingredient. For each Γ, two-state predicate
ϕ ⊆ State(Γ) × State(Γ), and σ ∈ State(Γ), define σ↓ϕ
by σ↓ϕ = {σ′ | (σ, σ′) ∈ ϕ}.

DEFINITION 4.3. For all well formed Γ ` P {S} Q, where
S may include specification statements, and every method
environment µ, define µ |= P {S} Q iff

∀σ ∈ State(Γ) : σ ∈ [[P ]] ⇒ σ ∈ {|S|}(µ)(σ↓[[Q]]).

In case Q does not depend on the initial state, so that we can
consider [[Q]] to be a set of states rather than pairs, note that
µ |= P {S} Q is equivalent to [[P ]] ⊆ {|S|}(µ)([[Q]]) —our
rendering of the usual P ⇒ wlp(S, Q).

LEMMA 4.4. Suppose S contains no specification state-
ments. Then µ |= P {S} Q if and only if P {S} Q is
valid for µ.

This is a straightforward consequence of the relation (3)
which can be shown to hold for all S.

4.3.4 Satisfaction for methods and method
environments

The method call rules are only sound if the invoked method
implementations satisfy their specifications. This subsection
defines satisfaction for an individual method body —i.e., the
semantics of the notation “S sat ST (T,m)” used in rules
(SAT RE) and (SAT MP). This is closely related to satisfac-
tion by all methods in the class table —i.e., the semantics of
the notation CT ` ST used in rule (CLASS TABLE).

The first step is to define the refinement order v. For
predicate transformers f , g over Γ we define

f v g ⇐⇒ ∀ϕ ∈ Pred(Γ) : f(ϕ) ⊆ g(ϕ).

The semantics of spec is justified by the following.

LEMMA 4.5. For all µ, P, S,Q:

{|spec(P,Q)|}(µ) v {|S|}(µ) iff µ |= P {S} Q.

The proof is straightforward.
The next notion expresses that each method in environ-

ment µ satisfies its specification.

DEFINITION 4.6. µ |= ST iff for all T and all methods m
declared or inherited in T with parameters ~y : ~T , and for
Γ = this :T, ~y : ~T :

• if ST (T,m) = re(P,Q) then

{|Γ ` spec(P,Q)|}(µ) v wlp(µ(T,m));

• if ST (T,m) = mp(S) then

{|Γ ` S|}(µ) v wlp(µ(T,m)).

The definition applies to any µ but consider what it means
in case µ is the actual semantics µ̂ of the program. That is,
suppose µ̂(T,m) is the state transformer denoted by method
body S. Then wlp(µ̂(T,m)) is the same thing as {|S|}(µ̂)
—recall (1). So in the case that ST (T,m) is a requires/en-
sures form re(P,Q), the definition amounts to saying µ̂ |=
P {S} Q owing to Lemma 4.5.

A consequence of Assumption 4.1 is that µ |= ST im-
plies

T ′ ≤ T ⇒ wlp(µ(T,m)) v wlp(µ(T ′,m) (5)

Definition 4.6 is for the consequent of rule (CLASS TABLE)
and the following for its antecedent.

DEFINITION 4.7. Define µ |= S sat ST (T,m) by cases:

• if ST (T,m) is re(P,Q) then µ |= P {S} Q
• if ST (T,m) is mp(S) then {|S|}(µ) v {|S|}(µ)

4.3.5 Soundness
This section proves the main results. The first, Theorem 4.12,
says that if CT ` ST is derivable using the rules, then
µ̂ |= ST , where µ̂ is the semantics of CT . The second,
Corollary 4.13, says that the Hoare rules for statements are
sound with respect to µ̂ and the state transformer semantics.

The first steps are somewhat technical; the reader may
skip to Theorem 4.9 on first reading.

It is easy to show that wlp(f) is monotonic, in the sense
that ϕ ⊆ ψ implies wlp(f)(ϕ) ⊆ wlp(f)(ψ), for any state
transformer f . Moreover, the semantics for other constructs
also yields monotonic predicate transformers, i.e., {|S|}(µ)
is monotonic for all S and all µ.

A standard result in refinement calculus is that forms
that combine statements (such as sequencing and if) are
monotonic with respect to refinement [2]. For example, if
{|S1|}(µ) v {|S′1|}(µ), then {|S1S2|}(µ) v {|S′1S2|}(µ).
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This case of v-monotonicity depends on {|S2|}(µ) being a
monotonic predicate transformer.

To deal with the substitutions, we define semantic sub-
stitution for predicate transformers, in particular for those
denoted by methods of some mtype(T,m) = ~y : ~T→void.
Note that for expressiveness in the programming language
we do not require that arguments in method calls are dis-
tinct, which means we must consider non-injective substitu-
tions, so we cannot just invert the substitution and apply that
to the final state.

Let Γ be this :T, ~y : ~T and let Γ′ be x :T, ~x : ~T . Sup-
pose f is a predicate transformer on Pred(Γ) that is in-
dependent from the final values of this, ~y, i.e., f(ϕ) =
f(∃this, ~y · ϕ). Define f [x, ~x/this, ~y] on Pred(Γ′) by
σ ∈ f [x, ~x/this, ~y](ϕ) iff

σ[x, ~x/this, ~y] ∈ f(∃this, ~y · ϕ− x, ~x)

where we use an obvious notation for state substitutions and
we write ∃this, ~y ·ϕ−x, ~x for the Γ′-predicate obtained by
dropping x, ~x from states and then adding all possible values
for this, ~y.

It is straightforward to show that this semantic substitu-
tion is monotonic and to prove the following.

LEMMA 4.8 (substitution). Consider Γ,Γ′ as just above.
Suppose Γ ` S and suppose S does not assign the variables
in Γ (but may assign locals and the heap). Then, for any µ

{|Γ′ ` S[x, ~x/this, ~y]|}(µ)
= ({|Γ ` S|}(µ))[x, ~x/this, ~y]

We omit the similar details for the semantic substitution
operation on state transformers that do not assign ~y, but note
the connection for state transformer f on State(Γ):

(wlp(f))[x, ~x/this, ~y] = wlp(f [x, ~x/this, ~y]) (6)

Now we can proceed to soundness of the statement rules.
The modularity of reasoning in terms of specifications is
reflected in the fact that they are sound with respect to every
method environment that satisfies the specification table.

THEOREM 4.9 (Soundness of statement rules). For any µ,
if µ |= ST and P {S} Q is derivable then µ |= P {S} Q.

Proof: by induction on derivation of P {S} Q. We omit
proofs of the standard rules for assignment, etc.

For (MCALL) we must show

µ |= P && x instanceof T ′ {x.m(~x);} Q

assuming the antecedents of the rule. As per Definition 4.3,
consider any state σ in [[P && x instanceof T ′]]. By type
soundness, the dynamic type of the receiver is some subclass
T ′′ of T ′. By an antecedent of the rule we have ST (T ′,m) =
re(P ′, Q′). By hypothesis of the Theorem we have µ |=
ST . So by Definition 4.6 we have {|spec(P ′, Q′)|}(µ) v

wlp(µ(T ′,m)). So {|spec(P ′, Q′)|}(µ) v wlp(µ(T ′′,m))
by behavioral subtyping, (5). To complete the argument
that σ is in {|S|}(µ)(σ↓[[Q]]), one unfolds the semantics of
x.m(~x), which passes the argument values to µ(T ′′,m)) in
a way that matches the substitutions. We omit further details,
which rely on substitution properties above, since the rule is
not novel.

For rule (HOCALL) we must show

µ |= P && x instanceof T ′ {x.m(~x);} Q

Because method call is a primitive and does not contain
specification statements, we can prove the Hoare triple in
the simpler form (2) as per Lemma 4.4. That is, for any σ we
must show

if σ ∈ [[P ]] and [[x.m(~x)]](µ)(σ)) 6= ⊥
then (σ, [[x.m(~x)]](µ)(σ)) ∈ [[Q]] (7)

assuming the antecedents of rule (HOCALL). So suppose
ST (T ′,m) = mp(S′) and let S = S′[x, ~x/this, ~y]. From
the key antecedent P {S} Q, by induction on its deriva-
tion, we have µ |= P {S} Q. By Lemma 4.5 we get
{|spec(P,Q)|}(µ) v {|S|}(µ). For any T ′′ with T ′′ ≤ T ′

we have {|S′|}(µ) v wlp(µ(T ′′,m)) by behavioral subtyp-
ing and hypothesis µ |= ST of the Theorem. So by mono-
tonicity of substitution we have

{|S′|}(µ)[x, ~x/this, ~y]
v wlp(µ(T ′′,m))[x, ~x/this, ~y]. (8)

(By the antecedent that S′ does not assign to this, ~y, its se-
mantics {|S′|}(µ) is independent from variables in the post-
condition, so the semantic substitution is defined.) Now (8)
is equivalent to

{|S|}(µ) v wlp(µ(T ′′,m))[x, ~x/this, ~y]

by Lemma 4.8 and definition of S. Since we already proved
{|spec(P,Q)|}(µ) v {|S|}(µ) we get, for every T ′′ ≤ T ′,
that {|spec(P,Q)|}(µ) v wlp(µ(T ′′,m))[x, ~x/this, ~y].
Thus for each T ′′, unfolding the definition of v, for all ϕ,

{|spec(P,Q)|}(µ)(ϕ)
⊆ wlp(µ(T ′′,m))[x, ~x/this, ~y](ϕ). (9)

Finally let us show (7). Suppose σ ∈ [[P ]]. If σ(x)
is null, then by semantics [[x.m(~x)]](µ)(σ) is ⊥ and we
are done. Otherwise, [[x.m(~x)]](µ)(σ) is defined to be
µ(T ′′,m)[x, ~x/this, ~y](σ) where T ′′ is the dynamic type
of x in σ. We show that the consequent in (7) holds, provided
that µ(T ′′,m)[x, ~x/this, ~y](σ) 6= ⊥.

Consider some σ ∈ [[P ]] and instantiate (9) with ϕ : =
(σ↓[[Q]]). Using the semantics of spec(P,Q) and definition
of σ↓[[Q]], the left side of the inclusion contains σ, so

σ ∈ wlp(µ(T ′′,m))[x, ~x/this, ~y](σ↓[[Q]]).
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Rewriting by definition of wlp and using (6) we get

(µ(T ′′,m)[x, ~x/this, ~y])(σ) ∈ (σ↓[[Q]]),

whence by definition of σ↓[[Q]]

(σ, (µ(T ′′,m)[x, ~x/this, ~y])(σ)) ∈ [[Q]].

LEMMA 4.10 (Soundness of (SAT RE)). Let T be a class
and m a method. Suppose µ |= ST and ST (T,m) =
re(P,Q). If the antecedents of rule (SAT RE) hold then
µ |= S sat ST (T,m).

Proof: By premise of the rule we have P {S} Q and so by
Theorem 4.9 we get µ |= P {S} Q, whence µ |= S sat
ST (T,m) by Definition 4.7 and Lemma 4.5.

THEOREM 4.11 (Soundness of (SAT MP)). Let class T and
methodm be given. Let ST , and µ be such that ST (T,m) =
mp(S) and µ |= ST . If the antecedents of rule (SAT MP)
hold then µ |= S sat ST (T,m).

Proof: The premises of (SAT MP) are match(S,S) and also
P {S′} Q for each “refining P,Q as S′” in S. So for each
such S′ we get, by Theorem 4.9, that µ |= P {S′} Q. Thus
by Lemma 4.5 we have {|spec(P,Q)|}(µ) v {|S′|}(µ). By
definition of matches(S,S), the only difference between S
and S is that S may contain some specification statements
spec(P,Q) that correspond, in S, to sub-statements of the
form refining P,Q as S′. Recall that the semantics of
refining P,Q as S′ is just the semantics of S′. Hence, by
using {|spec(P,Q)|}(µ) v {|S′|}(µ) andv-monotonicity of
all program constructors we get {|S|}(µ) v {|S|}(µ), whence
µ |= S sat ST (T,m) by Definition 4.7.

The preceding results give soundness of the rules for ver-
ifying statements and method bodies, under the assumption
that a method environment µ is given such that µ |= ST . The
next result says that if every method body is verified, the
assumption can be discharged by using the actual program
semantics. Since methods can make recursive and mutually
recursive calls, the proof resembles proofs of soundness for
the recursive procedure rule in simple imperative languages.

THEOREM 4.12 (Soundness of rule (CLASS TABLE)). Let µ̂
be [[CT ]]. If CT ` ST then µ̂ |= ST .

Proof: We prove, by induction on i, that µi |= ST for every
µi in the approximation chain that defines µ̂. Hence by (1)
the least upper bound also satisfies ST , i.e., µ̂ |= ST .

The base case i = 0 is trivial since each µ0(T,m) is λσ.⊥
which satisfies every specification.

For the induction step, suppose µi |= ST . Now µi+1 is
defined using [[S]](µi) for each method body S. We need
to show that [[S]](µi) satisfies ST (T,m). By CT ` ST
according to rule (CLASS TABLE) we have S sat ST (T,m),
from either rule (SAT RE) or (SAT MP).

For the case of (SAT RE), we instantiate Lemma 4.10
to get µi |= S sat ST (T,m) which is equivalent to

{|spec(P,Q)|}(µi) v {|S|}(µi) and since the body S has
no specification statements this is equivalent to

{|spec(P,Q)|}(µi) v wlp([[S]](µi)

which was to be proved.
For the case of (SAT MP), we instantiate Theorem 4.11

and the rest of the argument is similar.

COROLLARY 4.13. If S has no specification statements
and if P {S} Q is provable, then it is valid in the state-
transformer semantics.

Proof: Recall that “provable” means P {S} Q is derivable
and in addition CT ` ST is derivable. By the latter and
Theorem 4.12 we have µ̂ |= ST . Using P {S} Q and
Theorem 4.9 we get µ̂ |= P {S} Q. By Lemma 4.4 we
get satisfaction in terms of state transformers, i.e., (2) for µ̂.

5. Discussion
5.1 Generality of our Approach
We formalized our approach as a Hoare logic, but it can be
adapted to other ways of doing verification, for example, us-
ing verification conditions based on weakest preconditions,
or using a refinement calculus.

It was a pleasant surprise that, although refinement un-
derlies soundness of our technique, the grey-box approach
can be deployed without need for explicit reasoning in the
style of refinement calculi. Nor does our technique require
features of JML other than specification statements and re-
fining statements.

Adaptation to total correctness should be easy, beyond
the inherent complication of measure functions for mutually-
recursive, dynamically-dispatched methods.

An important extension is to take specification visibil-
ity into account. Rules (MCALL) and especially (HOCALL)
could allow use of any specifications visible at the call site,
e.g., those with protected visibility in the caller’s and there-
fore not necessarily visible in the callee’s class. This is easily
added to our formalism and specification visibility is already
well integrated in JML [26].

5.2 Specification Inheritance
To fit in with the rest of JML, our technique must not cause
major disruptions in JML’s semantics. In particular, model
program specifications must fit in with JML’s ability to give
multiple specifications (what it calls specification cases) for
each method. This feature is used as a way to explain speci-
fication inheritance for methods in JML [14, 23, 27].

However, viewing model program specifications as just
another kind of specification case in JML seems to work
well. Reasoning happens as follows. To verify an imple-
mentation, the programmer must show that the code satisfies
each specification case that applies to that method, including
all specification cases inherited from supertypes. Similarly,
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clients reasoning about a call can pick one of the available
specification cases to use in reasoning about the call. That
is, a simple interpretation of the meaning of specification
inheritance (and joins) for model program specifications is
that implementers must satisfy all of the given model pro-
gram specifications and that clients can choose a particular
model program specification when reasoning about a HOM
call.

This idea could be formalized as follows. First, general-
ize the specification table ST so that ST (T,m) returns a set
of specifications. The set ST (T,m) is the set of all speci-
fications declared in T or some supertype of T for m; this
gives meaning to specification inheritance for both model
programs and requires/ensures specifications. Second, gen-
eralize the (HOCALL) and (MCALL) rules so that clients can
use any sc ∈ ST (T,m). Third, for verification of implemen-
tations, verify that the code satisfies each sc ∈ ST (T,m).
This would guarantee that all types are behavioral subtypes
of each of their supertypes, and that supertype abstraction is
valid [14, 23, 27].

If m has two model program specifications S1 and S2

and if there is no body S that matches both S1 and S2, then
m cannot be correctly implemented. That is, specification
inheritance may strengthen a specification so much that it
becomes unsatisfiable. (This also happens with standard re-
quires/ensures specifications.)

Previous work formalized the join of requires/ensures
specification cases [14, 23, 27] using state predicates. The
ability to use joined specification cases adds power to the
proof system. However, it is not clear how to succinctly
express the join of model program specification cases, unless
they all have code that is identical except for having possibly
different specification statements in the same places.

5.3 Verification of Implementations
Our approach uses simple syntactic matching for verification
of implementations. Its simplicity allows us to focus on the
big picture, making explanations of the ideas and soundness
proof clear.

However, a disadvantage of our technique’s use of simple
syntactic matching is that it only allows the specification
of mandatory calls when the surrounding control structures
are also exposed. An example of this exposure is shown
in Figure 20. The control structure around the call to f is
simple enough that its model program must reveal the order
of iteration or cannot identify the mandatory call at all.

While a more complex notion of matching could be used,
it would have to rely on semantical (e.g., proof-based) tech-
niques, such as those used in the refinement calculus [2, 34]
or in program transformation.

To obtain more flexibility, one could generalize match-
ing in various ways. One way would be to generalize the
“patterns,” that is, the model program specifications. For ex-
ample, one could allow more constructs from the refinement
calculus, such as nondeterministic if statements. Although

public class HashTable { /* ... */

private Object[] values = new Object[17];

public /*@ extract @*/
void applyToValues(IntFun s)
{

for (int i = 0; i < values.length; i++) {
if (values[i] != null) {

s.f(values[i]);
}

}
}

}

Figure 20. A hash table with an applyToValues HOM.

specification statements can simulate many refinement cal-
culus features, they may not be a good basis for partially
specifying control structures.

Another way to obtain more flexibility would be to allow
the refining statement to match other statements. Since the
soundness of our technique relies on the semantic notion of
refinement, any complementary notion of matching and re-
finement could work. However, then verification would re-
quire a real refinement calculus, whereas a key contribution
of our approach is that use of model programs does not force
the reasoner beyond Hoare logic.

5.4 More about Refining Statements
Refining statements themselves are interesting. Their design
arose through discussions on the JML interest mailing list,
although they are only partially implemented in the Com-
mon JML tools. Several tool builders want something like a
refining statement to give frame axioms (JML’s assignable
clause) for arbitrary statements, particularly for loop state-
ments [6, 19]. Although the refining statement in our for-
malism does not include JML’s assignable clause, it is easy
to add such clauses to a refining statement, as it is essentially
a way to attach a specification case to a statement.

The idea of attaching a specification to a statement is
remarkably flexible. For example, one can use a refining
statement to replace loop invariant declarations. Suppose S
is the body of a loop for which P is to be declared as its
invariant. This can be done by writing

refining
normal_behavior

requires P; ensures P;
S

in place of the body S. However, if this is done, it requires
a slightly more complex notion of pattern matching, since
some refining statements will appear in model programs.

5.5 Runtime Assertion Checking
In our approach, refining statements would be the fo-
cus of runtime assertion checking for higher order methods.
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That is, to dynamically check that code implements a model
program specification, it suffices to statically match the code
against the specification, check the assignable clause, and
then to dynamically check that: the precondition given in the
refining statement’s requires clause holds just before execut-
ing its body, and its ensures clause holds just after executing
its body.

6. Future Work
Future work includes extending the theoretical and practi-
cal treatment of grey-box specifications in several directions.
Frame axioms seem to work fine using the datagroup con-
cept (see Section 2.1), so a formal treatment may be easy.
Other extensions to our approach could include termination,
or treating exceptions and concurrency.

7. Conclusions
Documentation of HOMs is an important problem [25, 42].
It occurs in connection with most behavioral design pat-
terns, and is quite important for frameworks using such pat-
terns. Besides the grey-box approach [7, 8, 9], we know of
two other approaches to documenting such methods: writ-
ing specifications in higher-order logic [12, 15] and writing
trace-based specifications [42]. Both of these techniques are
difficult to use, especially informally. We are unaware of any
use of the higher-order logic approach for OO programs.

On the other hand, the grey-box approach corresponds
well to standard documentation practice, which presents the
method’s code, perhaps omitting some details. Our formal-
ization of this technique explains its basic soundness and
gives insight into how to use it more effectively. First, we
have precisely explained how one should use this technique
in client reasoning, by using a copy rule [33] to explain calls
to methods with such specifications. (See rule (HOCALL)
in Section 4.3.1.) In essence one copies the model program
specification’s code to the call site, and replaces formals with
actuals.

Second, we have shown the soundness of the grey-box
technique for suppressing details by writing specification
statements. Programmers can use this idea informally, by us-
ing specification statements in their documentation to stand
for pieces of hidden code. In doing so, programmers provide
a specification for the hidden piece of code.

The examples presented show that by using a refining
statement to mark pieces of code as implementing a speci-
fication statement, one can automatically extract grey-box
specifications from code. This helps make specifying HOMs
more practical.
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