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class Demo {
private arg : int, :sPr : bool;
proc prime(s : Demo, n : int) : bool
{ « :bool ;= “whether n is prime”; return x; }
proc memo(s : Demo,n : int) : bool
{ if n = 0 then x := false; return x;
elseif s.arg #n
then s.arg := n; s.1sPr = “whether n Is prime”; endif ;
x = S.1sPr; return x; }
proc m(s : Demo) : bool

{ s.arg:=1; assert memo(s,2); return (s.arg == 1);}...}



class Cell { public val : bool }
class Demo {
proc prime(s : Demo,n : int) : Cell
{ «:Cell .= new Cell; x.val := “whether n prime™; return x; }



Pure expressions In specification

What does a precondition with side effects mean?
What good is runtime checking for such an assertion?

¢ Eiffel: advice to use only pure methods, not checked

¢ ESC/Java: specifications and annotation using Java
expressions without method calls

¢ JML.: strong purity; only calls of pure methods— may
allocate new objects but not update fields.

But lazy initialization and memoization common in libraries.
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Purity Is also useful for program transformations etc.



Outline of talk

¢ criteria for a notion of purity
¢ strong purity

¢ observational purity

Procedure p is observationally pure outside class D if
no object it updates is visible in code of any class C,
C #D.

¢ proving observational purity by equivalence with a
strongly pure procedure



Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

¢ assert p = skip, provided p is pure

¢ = iscongruence: If p = q then KClp] = KClq] for all
program contexts 1C|—].

Correctness-preserving: take K[—] to be (—; assert Q).
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Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

¢ assert p = skip, provided p is pure

¢ = iscongruence: If p = q then KClp] = KClq] for all
program contexts 1C|—].

Correctness-preserving: take K[—] to be (—; assert Q).
Also want determinacy, totality—beyond our scope.

Semantics: h —{p— k, v means procedure p takes initial
heap h to final heap k and value v (ignoring arguments).
Commands: h —assert pl— k iff h —{p|— k, v and v = true.
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allocated objects, is the same as initial:
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Strong purity

Def:. p is strongly pure iff the final heap, restricted to initially
allocated objects, is the same as initial:
h —ipl— k implies (domh <k) = h (for all h, k).

Heap equivalence: given bijection 3 on locations, define
h ~, h'iff ho ~3 h'’ o’ for all (o, 0’) € 8.

h ~, h'
B
Def: p = p’iff p | L p’ Implies k ~ k' forv O 8.
k k'

Thm: If p strongly pure then assert p ~ skip.

For Java-like language and specifications, ~ Is congruence.
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Observational purity

Let vis C' < h o be the fields of object h o visible in class C.
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Observational purity

Let vis C' < h o be the fields of object h o visible in class C.

Def: h ’”BC h' iff (visC < h o) ~5 (VisC < h'o') for all (o,0’) € 3

Accordingly for p =€ p’.

Lemma: p strongly pure iff
h —pl— k = k ~5 h, for 6 = id

Def. p Is observationally pure outside D iff
h —pl> k = k ~§ h,ford =id, and all C # D.

Example: memo is observationally pure outside class
Demo, because arg and :sPr are not visible.



First steps

Thm: If p observationally pure outside D then assert p ~¢ skip.
Hazards:

¢ postconditions sensitive to garbage, e.qg., “no Cell
exists"—Dbreak strong purity too, I.e., congruence for =~

¢ violation of encapsulation breaks congruence:
proc leak(s : Demo) : int { return s.arg; |

assert memo(s, x);y = leak(s) #¢ skip;y := leak(s)

¢ encapsulation is difficult with mutable objects



Problem

Unfortunately, =€ is not a congruence even without leaks:
memo Z“ memo —because h ~5 h' allows

o.arg = 3, 0.1sPr = false in h and

o.arg = 3,0.1.sPr =true in h'
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Solution

Relation =< Is a D-simulation iff initialized and
¢ h=sgandg~; kimplies h <45 k
¢ h xp kimplies h ~5 kforall C # D

¢ p =< p for every procedure p in class D
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Solution

Relation =< Is a D-simulation iff initialized and
¢ h=sgandg~; kimplies h <45 k
¢ h xp kimplies h ~5 kforall C # D

¢ p =< p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPLO2]:
p < p’' = Klp] < K[p’] and moreover p < p

Def. p is observationally pure for < iff h {pl— k = k <5 h.

This implies p observationally pure outside D.
And assert p < skip, whence Klassert p] QC IClskip].
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Proving observational purity |

Avoiding observational purity property per se:

Thm: If p < q for D-simulation <, and q is strongly pure,

then KClassert p] QC KClskip] for any C # D.

Use simulation in usual way to prove equivalence of
Implementations.
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Proving observational purity |

Avoiding observational purity property per se:

Thm: If p < q for D-simulation <, and q is strongly pure,

then KClassert p] QC KClskip] for any C # D.

Use simulation in usual way to prove equivalence of
Implementations.

Example: prime < memo where h < h'iff h ~¢ h’ for all
C # D and for every o : Demeo,

o.arg # 0 = o.1sPr = “whether o.arg Is prime”.
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Proving observational purity Il

Typically h =< h'iff I(h) and I(h’) and h ~¢ R’ (all C # D).
¢ show I Is invariant

¢ show ~¢ preserved using info flow analysis

¢+ label cache (arg,1sPr) as secret, all else public;
check secure flow

+ for pure procedures—“write confinement”: k ~§ h
with 6 = id,,
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Proving observational purity Il

Typically h =< h'iff I(h) and I(h’) and h ~¢ R’ (all C # D).
¢ show I Is invariant

¢ show ~¢ preserved using info flow analysis

¢+ label cache (arg,1sPr) as secret, all else public;
check secure flow

+ for pure procedures—“write confinement”: k ~§ h
with 6 = id,,

But secret cache used for public output. Add flow rule:
assert secret = open; return secret
(prove the assertion using I, e.g., memo returns prime(n))

13-b



Conclusion

¢ Strong purity: beware garbage-sensitive assertions
[Calcagno et al, TCS]

¢ Observational purity: context of use matters
¢ Prove equal to something pure or something public

¢ Salcianu and Rinard: A combined pointer and purity
analysis for Java programs [MIT TR]

¢ Spec#:. implementation and experience

¢ JML.: full account of strong encapsulation, w/inheritance,
exceptions, file I/O ...
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