
Observational purity & encapsulation

David A. Naumann
Stevens Institute of Technology

Hoboken, New Jersey, USA

See also Mike Barnett, D.N., Wolfram Schulte, Qi Sun:
99.44% Pure: Functional Abstractions in Specifications

Supported by NSF CCR-0208984, CCF-0429894 & Microsoft

FASE 7 April 2005 / 1

class Demo {

private arg : int, isPr : bool;

proc prime(s : Demo, n : int) : bool

{ x : bool := “whether n is prime”; return x; }

proc memo(s : Demo, n : int) : bool

{ if n = 0 then x := false; return x;

elseif s.arg 6= n

then s.arg := n; s.isPr := “whether n is prime”; endif ;

x := s.isPr; return x; }

proc m(s : Demo) : bool

{ s.arg := 1; assert memo(s, 2); return (s.arg == 1); } . . .}

FASE 7 April 2005 / 2

class Cell { public val : bool }

class Demo {

proc prime(s : Demo, n : int) : Cell

{ x : Cell := new Cell; x.val := “whether n prime”; return x; }

. . .

}

FASE 7 April 2005 / 3

Pure expressions in specification

What does a precondition with side effects mean?

What good is runtime checking for such an assertion?

� Eiffel: advice to use only pure methods, not checked

� ESC/Java: specifications and annotation using Java
expressions without method calls

� JML: strong purity; only calls of pure methods— may
allocate new objects but not update fields.

But lazy initialization and memoization common in libraries.

Purity is also useful for program transformations etc.

FASE 7 April 2005 / 4

Pure expressions in specification

What does a precondition with side effects mean?

What good is runtime checking for such an assertion?

� Eiffel: advice to use only pure methods, not checked

� ESC/Java: specifications and annotation using Java
expressions without method calls

� JML: strong purity; only calls of pure methods— may
allocate new objects but not update fields.

But lazy initialization and memoization common in libraries.

Purity is also useful for program transformations etc.

FASE 7 April 2005 / 4-a

Outline of talk

� criteria for a notion of purity

� strong purity

� observational purity

Procedure p is observationally pure outside class D if
no object it updates is visible in code of any class C,
C 6= D.

� proving observational purity by equivalence with a
strongly pure procedure

FASE 7 April 2005 / 5

Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

� assert p ≈ skip, provided p is pure

� ≈ is congruence: If p ≈ q then K[p] ≈ K[q] for all
program contexts K[−].

Correctness-preserving: take K[−] to be (−; assert Q).

Also want determinacy, totality—beyond our scope.

Semantics: h −|p|→ k, v means procedure p takes initial
heap h to final heap k and value v (ignoring arguments).
Commands: h −|assert p|→ k iff h −|p|→ k, v and v = true.

FASE 7 April 2005 / 6

Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

� assert p ≈ skip, provided p is pure

� ≈ is congruence: If p ≈ q then K[p] ≈ K[q] for all
program contexts K[−].

Correctness-preserving: take K[−] to be (−; assert Q).

Also want determinacy, totality—beyond our scope.

Semantics: h −|p|→ k, v means procedure p takes initial
heap h to final heap k and value v (ignoring arguments).
Commands: h −|assert p|→ k iff h −|p|→ k, v and v = true.

FASE 7 April 2005 / 6-a

Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

� assert p ≈ skip, provided p is pure

� ≈ is congruence: If p ≈ q then K[p] ≈ K[q] for all
program contexts K[−].

Correctness-preserving: take K[−] to be (−; assert Q).

Also want determinacy, totality—beyond our scope.

Semantics: h −|p|→ k, v means procedure p takes initial
heap h to final heap k and value v (ignoring arguments).
Commands: h −|assert p|→ k iff h −|p|→ k, v and v = true.

FASE 7 April 2005 / 6-b

Strong purity

Def: p is strongly pure iff the final heap, restricted to initially
allocated objects, is the same as initial:
h −|p|→ k implies (dom h / k) = h (for all h, k).

Heap equivalence: given bijection β on locations, define
h ∼ h iff h o ∼ h o for all (o, o) ∈ β.

Def: p ≈ p iff
h ∼ h

p ↓ ↓ p

k k

implies k ∼ k for γ ⊇ β.

Thm: If p strongly pure then assert p ≈ skip.

For Java-like language and specifications, ≈ is congruence.

FASE 7 April 2005 / 7

Strong purity

Def: p is strongly pure iff the final heap, restricted to initially
allocated objects, is the same as initial:
h −|p|→ k implies (dom h / k) = h (for all h, k).

Heap equivalence: given bijection β on locations, define
h ∼

�

h � iff h o ∼

�

h � o � for all (o, o �) ∈ β.

Def: p ≈ p iff
h ∼ h

p ↓ ↓ p

k k

implies k ∼ k for γ ⊇ β.

Thm: If p strongly pure then assert p ≈ skip.

For Java-like language and specifications, ≈ is congruence.

FASE 7 April 2005 / 7-a

Strong purity

Def: p is strongly pure iff the final heap, restricted to initially
allocated objects, is the same as initial:
h −|p|→ k implies (dom h / k) = h (for all h, k).

Heap equivalence: given bijection β on locations, define
h ∼

�

h � iff h o ∼

�

h � o � for all (o, o �) ∈ β.

Def: p ≈ p � iff
h ∼

�

h �

p ↓ ↓ p �

k k �

implies k ∼

�

k � for γ ⊇ β.

Thm: If p strongly pure then assert p ≈ skip.

For Java-like language and specifications, ≈ is congruence.

FASE 7 April 2005 / 7-b

Observational purity

Let vis C / h o be the fields of object h o visible in class C.

Def: h ∼ �
�

h � iff (vis C / h o) ∼

�

(vis C / h � o �) for all (o, o �) ∈ β

Accordingly for p ≈ � p � .

Lemma: p strongly pure iff
h −|p|→ k ⇒ k ∼ h, for δ = id

Def: p is observationally pure outside D iff
h −|p|→ k ⇒ k ∼ h, for δ = id and all C 6= D.

Example: memo is observationally pure outside class
Demo, because arg and isPr are not visible.

FASE 7 April 2005 / 8

Observational purity

Let vis C / h o be the fields of object h o visible in class C.

Def: h ∼ �
�

h � iff (vis C / h o) ∼

�

(vis C / h � o �) for all (o, o �) ∈ β

Accordingly for p ≈ � p � .

Lemma: p strongly pure iff
h −|p|→ k ⇒ k ∼

�

h, for δ = id �

Def: p is observationally pure outside D iff
h −|p|→ k ⇒ k ∼ h, for δ = id and all C 6= D.

Example: memo is observationally pure outside class
Demo, because arg and isPr are not visible.

FASE 7 April 2005 / 8-a

Observational purity

Let vis C / h o be the fields of object h o visible in class C.

Def: h ∼ �
�

h � iff (vis C / h o) ∼

�

(vis C / h � o �) for all (o, o �) ∈ β

Accordingly for p ≈ � p � .

Lemma: p strongly pure iff
h −|p|→ k ⇒ k ∼

�

h, for δ = id �
Def: p is observationally pure outside D iff
h −|p|→ k ⇒ k ∼ �

�

h, for δ = id � and all C 6= D.

Example: memo is observationally pure outside class
Demo, because arg and isPr are not visible.

FASE 7 April 2005 / 8-b

Observational purity

Let vis C / h o be the fields of object h o visible in class C.

Def: h ∼ �
�

h � iff (vis C / h o) ∼

�

(vis C / h � o �) for all (o, o �) ∈ β

Accordingly for p ≈ � p � .

Lemma: p strongly pure iff
h −|p|→ k ⇒ k ∼

�

h, for δ = id �
Def: p is observationally pure outside D iff
h −|p|→ k ⇒ k ∼ �

�

h, for δ = id � and all C 6= D.

Example: memo is observationally pure outside class
Demo, because arg and isPr are not visible.

FASE 7 April 2005 / 8-c

First steps

Thm: If p observationally pure outside D then assert p ≈ � skip.

Hazards:

� postconditions sensitive to garbage, e.g., “no Cell

exists”—break strong purity too, i.e., congruence for ≈

� violation of encapsulation breaks congruence:

proc leak(s : Demo) : int { return s.arg; }

assert memo(s, x); y := leak(s) 6≈ � skip; y := leak(s)

� encapsulation is difficult with mutable objects

FASE 7 April 2005 / 9

Problem

Unfortunately, ≈ � is not a congruence even without leaks:
memo 6≈ � memo —because h ∼ �

�

h � allows
o.arg = , o.isPr = false in h and
o.arg = , o.isPr = true in h �

FASE 7 April 2005 / 10

Solution

Relation � is a D-simulation iff initialized and

� h � � g and g ∼

�

k implies h � ��� �

k

� h �

�

k implies h ∼ �
�

k for all C 6= D

� p � p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPL02]:
p � p ⇒ K[p] � K[p] and moreover p � p

Def: p is observationally pure for � iff h −|p|→ k ⇒ k � h.

This implies p observationally pure outside D.

And assert p � skip, whence K[assert p] ≈ K[skip].

FASE 7 April 2005 / 11

Solution

Relation � is a D-simulation iff initialized and

� h � � g and g ∼

�

k implies h � ��� �

k

� h �

�

k implies h ∼ �
�

k for all C 6= D

� p � p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPL02]:
p � p � ⇒ K[p] � K[p �] and moreover p � p

Def: p is observationally pure for � iff h −|p|→ k ⇒ k � h.

This implies p observationally pure outside D.

And assert p � skip, whence K[assert p] ≈ K[skip].

FASE 7 April 2005 / 11-a

Solution

Relation � is a D-simulation iff initialized and

� h � � g and g ∼

�

k implies h � ��� �

k

� h �

�

k implies h ∼ �
�

k for all C 6= D

� p � p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPL02]:
p � p � ⇒ K[p] � K[p �] and moreover p � p

Def: p is observationally pure for � iff h −|p|→ k ⇒ k � � h.

This implies p observationally pure outside D.

And assert p � skip, whence K[assert p] ≈ K[skip].

FASE 7 April 2005 / 11-b

Solution

Relation � is a D-simulation iff initialized and

� h � � g and g ∼

�

k implies h � ��� �

k

� h �

�

k implies h ∼ �
�

k for all C 6= D

� p � p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPL02]:
p � p � ⇒ K[p] � K[p �] and moreover p � p

Def: p is observationally pure for � iff h −|p|→ k ⇒ k � � h.

This implies p observationally pure outside D.

And assert p � skip, whence K[assert p]
�

≈

�

K[skip].

FASE 7 April 2005 / 11-c

Proving observational purity I

Avoiding observational purity property per se:

Thm: If p � q for D-simulation �, and q is strongly pure,

then K[assert p]
�

≈
�

K[skip] for any C 6= D.

Use simulation in usual way to prove equivalence of
implementations.

Example: prime � memo where h � h iff h ∼ h for all
C 6= D and for every o : Demo,
o.arg 6= 0 ⇒ o.isPr = “whether o.arg is prime”.

FASE 7 April 2005 / 12

Proving observational purity I

Avoiding observational purity property per se:

Thm: If p � q for D-simulation �, and q is strongly pure,

then K[assert p]
�

≈
�

K[skip] for any C 6= D.

Use simulation in usual way to prove equivalence of
implementations.

Example: prime � memo where h � h � iff h ∼ � h � for all
C 6= D and for every o : Demo,
o.arg 6= 0 ⇒ o.isPr = “whether o.arg is prime”.

FASE 7 April 2005 / 12-a

Proving observational purity II

Typically h � h � iff I(h) and I(h �) and h ∼ � h � (all C 6= D).

� show I is invariant

� show ∼ � preserved using info flow analysis

� label cache (arg, isPr) as secret, all else public;
check secure flow

� for pure procedures—“write confinement”: k ∼ �
�

h

with δ = id �

But secret cache used for public output. Add flow rule:
assert secret = open; return secret

(prove the assertion using I, e.g., memo returns prime(n))

FASE 7 April 2005 / 13

Proving observational purity II

Typically h � h � iff I(h) and I(h �) and h ∼ � h � (all C 6= D).

� show I is invariant

� show ∼ � preserved using info flow analysis

� label cache (arg, isPr) as secret, all else public;
check secure flow

� for pure procedures—“write confinement”: k ∼ �
�

h

with δ = id �

But secret cache used for public output. Add flow rule:
assert secret = open; return secret

(prove the assertion using I, e.g., memo returns prime(n))

FASE 7 April 2005 / 13-a

Proving observational purity II

Typically h � h � iff I(h) and I(h �) and h ∼ � h � (all C 6= D).

� show I is invariant

� show ∼ � preserved using info flow analysis

� label cache (arg, isPr) as secret, all else public;
check secure flow

� for pure procedures—“write confinement”: k ∼ �
�

h

with δ = id �

But secret cache used for public output. Add flow rule:
assert secret = open; return secret

(prove the assertion using I, e.g., memo returns prime(n))

FASE 7 April 2005 / 13-b

Conclusion

� Strong purity: beware garbage-sensitive assertions
[Calcagno et al, TCS]

� Observational purity: context of use matters

� Prove equal to something pure or something public

� Sălcianu and Rinard: A combined pointer and purity
analysis for Java programs [MIT TR]

� Spec#: implementation and experience

� JML: full account of strong encapsulation, w/inheritance,
exceptions, file I/O . . .

FASE 7 April 2005 / 14

