Observational purity & encapsulation

David A. Naumann
Stevens Institute of Technology
Hoboken, New Jersey, USA

See also Mike Barnett, D.N., Wolfram Schulte, Qi Sun:
99.44% Pure: Functional Abstractions in Specifications

Supported by NSF CCR-0208984, CCF-0429894 & Microsoft



class Demo {
private arg : int, :sPr : bool;
proc prime(s : Demo, n : int) : bool
{ « :bool ;= “whether n is prime”; return x; }
proc memo(s : Demo,n : int) : bool
{ if n = 0 then x := false; return x;
elseif s.arg #n
then s.arg := n; s.1sPr = “whether n Is prime”; endif ;
x = S.1sPr; return x; }
proc m(s : Demo) : bool

{ s.arg:=1; assert memo(s,2); return (s.arg == 1);}...}



class Cell { public val : bool }
class Demo {
proc prime(s : Demo,n : int) : Cell
{ «:Cell .= new Cell; x.val := “whether n prime™; return x; }



Pure expressions In specification

What does a precondition with side effects mean?
What good is runtime checking for such an assertion?

¢ Eiffel: advice to use only pure methods, not checked

¢ ESC/Java: specifications and annotation using Java
expressions without method calls

¢ JML.: strong purity; only calls of pure methods— may
allocate new objects but not update fields.

But lazy initialization and memoization common in libraries.



Pure expressions In specification

What does a precondition with side effects mean?
What good is runtime checking for such an assertion?

¢ Eiffel: advice to use only pure methods, not checked

¢ ESC/Java: specifications and annotation using Java
expressions without method calls

¢ JML.: strong purity; only calls of pure methods— may
allocate new objects but not update fields.

But lazy initialization and memoization common in libraries.

Purity Is also useful for program transformations etc.



Outline of talk

¢ criteria for a notion of purity
¢ strong purity

¢ observational purity

Procedure p is observationally pure outside class D if
no object it updates is visible in code of any class C,
C #D.

¢ proving observational purity by equivalence with a
strongly pure procedure



Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

¢ assert p = skip, provided p is pure

¢ = iscongruence: If p = q then KClp] = KClq] for all
program contexts 1C|—].

Correctness-preserving: take K[—] to be (—; assert Q).



Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

¢ assert p = skip, provided p is pure

¢ = iscongruence: If p = q then KClp] = KClq] for all
program contexts 1C|—].

Correctness-preserving: take K[—] to be (—; assert Q).

Also want determinacy, totality—beyond our scope.



Criteria

(Partial correctness for simplicity; independent from
particular specification/verification system.)

¢ assert p = skip, provided p is pure

¢ = iscongruence: If p = q then KClp] = KClq] for all
program contexts 1C|—].

Correctness-preserving: take K[—] to be (—; assert Q).
Also want determinacy, totality—beyond our scope.

Semantics: h —{p— k, v means procedure p takes initial
heap h to final heap k and value v (ignoring arguments).
Commands: h —assert pl— k iff h —{p|— k, v and v = true.

6-b



Strong purity

Def:. p is strongly pure iff the final heap, restricted to initially
allocated objects, is the same as initial:
h —ipl— k implies (domh <k) = h (for all h, k).



Strong purity

Def:. p is strongly pure iff the final heap, restricted to initially
allocated objects, is the same as initial:
h —ipl— k implies (domh <k) = h (for all h, k).

Heap equivalence: given bijection 3 on locations, define
h ~, h'iff ho ~3 h'’ o’ for all (o, 0’) € 8.



Strong purity

Def:. p is strongly pure iff the final heap, restricted to initially
allocated objects, is the same as initial:
h —ipl— k implies (domh <k) = h (for all h, k).

Heap equivalence: given bijection 3 on locations, define
h ~, h'iff ho ~3 h'’ o’ for all (o, 0’) € 8.

h ~, h'
B
Def: p = p’iff p | L p’ Implies k ~ k' forv O 8.
k k'

Thm: If p strongly pure then assert p ~ skip.

For Java-like language and specifications, ~ Is congruence.

7-b



Observational purity

Let vis C' < h o be the fields of object h o visible in class C.

Def: h ’”BC h'iff (visC <ho)~, (visC <h’o’) forall (o,0’) € B

B
Accordingly for p =€ p’.



Observational purity

Let vis C' < h o be the fields of object h o visible in class C.

Def: h ’”BC h' iff (visC < h o) ~5 (VisC < h'o') for all (o,0’) € 3

Accordingly for p =€ p’.

Lemma: p strongly pure iff
h —pl— k = k ~5 h, for 6 = id



Observational purity

Let vis C' < h o be the fields of object h o visible in class C.

Def: h ’”BC h' iff (visC < h o) ~5 (VisC < h'o') for all (o,0’) € 3

Accordingly for p =€ p’.

Lemma: p strongly pure iff
h —pl— k = k ~5 h, for 6 = id

Def. p Is observationally pure outside D iff
h —pl> k = k ~§ h,ford =id, and all C # D.

8-b



Observational purity

Let vis C' < h o be the fields of object h o visible in class C.

Def: h ’”BC h' iff (visC < h o) ~5 (VisC < h'o') for all (o,0’) € 3

Accordingly for p =€ p’.

Lemma: p strongly pure iff
h —pl— k = k ~5 h, for 6 = id

Def. p Is observationally pure outside D iff
h —pl> k = k ~§ h,ford =id, and all C # D.

Example: memo is observationally pure outside class
Demo, because arg and :sPr are not visible.



First steps

Thm: If p observationally pure outside D then assert p ~¢ skip.
Hazards:

¢ postconditions sensitive to garbage, e.qg., “no Cell
exists"—Dbreak strong purity too, I.e., congruence for =~

¢ violation of encapsulation breaks congruence:
proc leak(s : Demo) : int { return s.arg; |

assert memo(s, x);y = leak(s) #¢ skip;y := leak(s)

¢ encapsulation is difficult with mutable objects



Problem

Unfortunately, =€ is not a congruence even without leaks:
memo Z“ memo —because h ~5 h' allows

o.arg = 3, 0.1sPr = false in h and

o.arg = 3,0.1.sPr =true in h'

10



Solution

Relation =< Is a D-simulation iff initialized and
¢ h=sgandg~; kimplies h <45 k
¢ h xp kimplies h ~5 kforall C # D

¢ p =< p for every procedure p in class D

11



Solution

Relation =< Is a D-simulation iff initialized and
¢ h=sgandg~; kimplies h <45 k
¢ h xp kimplies h ~5 kforall C # D

¢ p =< p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPLO2]:

p < p’' = Klp] < K[p’] and moreover p < p

11-



Solution

Relation =< Is a D-simulation iff initialized and
¢ h=sgandg~; kimplies h <45 k
¢ h xp kimplies h ~5 kforall C # D

¢ p =< p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPLO2]:
p < p’' = Klp] < K[p’] and moreover p < p

Def. p is observationally pure for < iff h {pl— k = k <5 h.

11-b



Solution

Relation =< Is a D-simulation iff initialized and
¢ h=sgandg~; kimplies h <45 k
¢ h xp kimplies h ~5 kforall C # D

¢ p =< p for every procedure p in class D

Assumption (parametricity) [Banerjee,Naumann POPLO2]:
p < p’' = Klp] < K[p’] and moreover p < p

Def. p is observationally pure for < iff h {pl— k = k <5 h.

This implies p observationally pure outside D.
And assert p < skip, whence Klassert p] QC IClskip].

11-c



Proving observational purity |

Avoiding observational purity property per se:

Thm: If p < q for D-simulation <, and q is strongly pure,

then KClassert p] QC KClskip] for any C # D.

Use simulation in usual way to prove equivalence of
Implementations.

12



Proving observational purity |

Avoiding observational purity property per se:

Thm: If p < q for D-simulation <, and q is strongly pure,

then KClassert p] QC KClskip] for any C # D.

Use simulation in usual way to prove equivalence of
Implementations.

Example: prime < memo where h < h'iff h ~¢ h’ for all
C # D and for every o : Demeo,

o.arg # 0 = o.1sPr = “whether o.arg Is prime”.

12-a



Proving observational purity Il

Typically h =< h'iff I(h) and I(h’) and h ~¢ R’ (all C # D).
¢ show I Is invariant

¢ show ~¢ preserved using info flow analysis

¢+ label cache (arg,1sPr) as secret, all else public;
check secure flow

+ for pure procedures—“write confinement”: k ~§ h
with 6 = id,,

13



Proving observational purity Il

Typically h =< h'iff I(h) and I(h’) and h ~¢ R’ (all C # D).
¢ show I Is invariant

¢ show ~¢ preserved using info flow analysis

¢+ label cache (arg,1sPr) as secret, all else public;
check secure flow

+ for pure procedures—“write confinement”: k ~§ h
with 6 = id,,

But secret cache used for public output. Add flow rule:
assert secret = open; return secret

13-a



Proving observational purity Il

Typically h =< h'iff I(h) and I(h’) and h ~¢ R’ (all C # D).
¢ show I Is invariant

¢ show ~¢ preserved using info flow analysis

¢+ label cache (arg,1sPr) as secret, all else public;
check secure flow

+ for pure procedures—“write confinement”: k ~§ h
with 6 = id,,

But secret cache used for public output. Add flow rule:
assert secret = open; return secret
(prove the assertion using I, e.g., memo returns prime(n))

13-b



Conclusion

¢ Strong purity: beware garbage-sensitive assertions
[Calcagno et al, TCS]

¢ Observational purity: context of use matters
¢ Prove equal to something pure or something public

¢ Salcianu and Rinard: A combined pointer and purity
analysis for Java programs [MIT TR]

¢ Spec#:. implementation and experience

¢ JML.: full account of strong encapsulation, w/inheritance,
exceptions, file I/O ...

14



