1. Implement the Miller-Rabin primality test. Use your primality test function to implement a \texttt{next prime}(v) function that finds a minimal prime \(p \) with \(p \geq v \).

2. Implement the algorithm \texttt{strong prime}(n) for generating a strong prime (see Figure 1). Think of a strategy in selecting the proper sizes of primes \(s, t \) and parameters \(i_0, j_0 \).

3. Implement RSA key generation for a given parameter \(n \), with \(n \) being the bit length of the key. Allow for the use of the \texttt{strong prime} (default) and \texttt{next prime} functions. Implement RSA encryption and decryption for a set of public and private keys. Test your implementation for different key length \(|k| \in \{256, 512, 1024, 2048\} \). Write a test program, that first generates a random pair of public and private key. Then read an input value (message) \(m \) and encrypt it using the public key. Afterwards, decrypt the encrypted message using the private key. The decrypted value should match the input value.

4. Implement a factorization attack on RSA for key length \(|k| \in \{60, 80, 100, 120\} \) using your factorization strategy from Project 2.

 \textbf{Extra credit:} Adjust your strategy to attack RSA with key length \(|k| \in \{140, 160\} \).

5. Compare results of factorization when random primes (function \texttt{next prime}(v)) used instead of strong primes. Describe your experiments and give conclusions.

Please use the method described in Project 1 to measure performance and the factorization routines of Project 2.

\textbf{INPUT:} \hspace{5pt} n - bit length of the prime
\textbf{OUTPUT:} A strong prime of bit length \(n \)
1: Generate two primes \(s \) and \(t \) of size roughly equal to \(n/2 \)
2: Select integer \(i_0 \). Find the first prime \(r = 2it + 1, i = i_0, i_0 + 1, i_0 + 2, \ldots \)
3: Compute \(p_0 = (2s^{-2} \mod r)s - 1 \)
4: Select integer \(j_0 \). Find the first prime \(p = p_0 + 2jrs, j = i_0, j_0 + 1, j_0 + 2, \ldots \)
5: \hspace{10pt} RETURN \(p \)

Figure 1: Gordon’s algorithm for generating a strong prime.

This project is due by December 15.