CS810A/MA810A Computer Algebra

Alex Myasnikov and Werner Backes

Stevens Institute of Technology

CS810A/MA810A 2008
Primality testing.

- In practice often need to deal with large primes.
- It happens that prime numbers are not too rare.
- Still need to decide whether a number is prime or not - primality testing.
Primality testing.

- Naive tests (factorization)
- Probabilistic tests:
 - Fast and simple
 - Have small probability of error.
- Deterministic tests (Agrawal, Saxena, Kayal $O((\log n)^6)$):
 - Slower than probabilistic
 - Difficult and therefore prune to programming errors.
Primality testing: pseudoprimes.

- Recall by Fermat’s theorem $a^{p-1} = 1 \mod p$ for all $a \in \mathbb{Z}_p$, when p is prime.
- If for a given n there exists a s.t. $a^{n-1} \neq 1 \mod n$ then a is a “witness” that n is not a prime.

Definition (Pseudoprime)

A composite integer $n \in \mathbb{Z}^+$ is called a base-a pseudoprime if

$$a^{n-1} = 1 \mod n.$$

We will deal with odd numbers only.
PROCEDURE Fermat’s test

INPUT: Odd $n \in \mathbb{Z}^+$

OUTPUT: COMPOSITE or PROBABLY PRIME

1: **IF** $2^{n-1} \neq 1 \mod n$ **THEN**

2: **RETURN** COMPOSITE

3: **ELSE**

4: **RETURN** PROBABLY PRIME
Primality testing: Fermat’s test.

- Fermat’s test is correct when returns COMPOSITE (2 is a witness)
- We do not know for sure otherwise
- What is the error probability of the Fermat’s test?
Primality testing: Fermat’s test.

- Only 22 values of $n < 10000$ when test errors
- One in a million chance of a 50-bit random number being base-2 pseudoprime.

Problem: there are numbers for which test fails with any base a
Definition (Carmichael numbers)
A composite positive integer \(n \) is called a Carmichael number if

\[a^{n-1} \equiv 1 \pmod{n} \]

for all \(a \) such that \(\gcd(a, n) = 1 \).

- Carmichael numbers are rare: there are only 2,163 of them less than 25,000,000,000.
If p is an odd prime, then the equation

$$x^2 = 1 \mod p$$

has only two solutions: $x = 1$ and $x = -1$.

- **Corollary:** if there exists a nontrivial square root of 1 modulo n, then n is composite.
- We can use this and incorporate the check when computing modulo exponentiation.
- Does not depend on n
Miller-Rabin test:
- Test several, randomly chosen bases \(a \)
- Test if nontrivial square roots of 1 ever discovered during exponentiation.
Primality testing: Miller-Rabin test.

PROCEDURE Witness

INPUT: Odd \(n \in \mathbb{Z}^+ \), \(a \in MZ_n \)

OUTPUT: TRUE if \(a \) is a witness of compositeness of \(n \)

1: LET \(< b_k, \ldots, 1 >\) be binary of \(n - 1 \) and \(d = 1 \)

2: FOR \(i = k, \ldots, 1 \) DO

3: \(x = d \) and \(d = x^2 \mod n \)

4: IF \(d = 1 \) and \(x \neq 1 \) and \(x \neq n - 1 \) RETURN TRUE

5: IF \(b_i = 1 \) THEN \(d = d \cdot a \mod n \)

6: END FOR

7: IF \(d \neq 1 \) RETURN TRUE

8: RETURN FALSE
If procedure \textit{Witness}(a, n) returns TRUE then \(n \) is composite and a proof can be constructed using \(a \).
Primality testing: Miller-Rabin test.

PROCEDURE MillerRabin

INPUT: Odd \(n \in \mathbb{Z}^+ \), number of repetitions \(s \)

OUTPUT: COMPOSITE or PROBABLY PRIME

1: \textbf{LET} \(\{a_1, \ldots, a_s\} \) a set of randomly chosen bases

2: \textbf{FOR} \(i = 1, \ldots, s \) \textbf{DO}

3: \textbf{IF} \text{Witness}(a,n)

4: \textbf{RETURN} COMPOSITE

5: \textbf{ELSE}

6: \textbf{RETURN} PROBABLY PRIME
Primality testing: Miller-Rabin test.

- Miller-Rabin test correct when returns COMPOSITE
- When returns PROBABLY PRIME then the error is small and does not depend on n
Primality testing: Miller-Rabin test.

Theorem

If n is an odd composite number, then the number of witnesses to the compositeness of n is at least $(n - 1)/2$.

NOTE: That this includes Carmichael numbers.

Proof.

Show that the number of NONwitnesses is not more than $(n - 1)/2$.
Primality testing: Miller-Rabin test.

- \(\mathbb{Z}_n^\times = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \} \)
- \(\mathbb{Z}_n^\times \) is a finite abelian group.
- \(\mathbb{Z}_{15}^\times = \{1, 2, 4, 7, 8, 11, 13, 14\} \)
Show that the number of NONwitnesses is not more than \((n - 1)/2\)

- Every nonwitness \(a\): \(a^{n-1} \equiv 1 \mod n \Rightarrow \gcd(a, n) = 1 \Rightarrow a \in \mathbb{Z}_n^x\)

- For all \(b \in \mathbb{Z}_n - \mathbb{Z}_n^x\), \(b\) is a witness:
 - \(\gcd(a, n) = d > 1 \Rightarrow ax = 1 \mod n\) has no solutions
 (including \(a^{n-2}x = 1 \mod n\)) \(\Rightarrow a^{n-1} \not\equiv 1 \mod n\)
Primality testing: Miller-Rabin test.

- Let B a proper subgroup of \mathbb{Z}_n^\times.
- $|B| \leq |\mathbb{Z}_n^\times|/2$ and since $|\mathbb{Z}_n^\times| \leq n - 1$ we have
 \[|B| \leq \frac{n - 1}{2} \]

We show that all nonwitnesses are contained in a proper subgroup of \mathbb{Z}_n^\times.
Show all nonwitnesses are in a proper subgroup of \mathbb{Z}_n^\times

Case 1: There exists $x \in \mathbb{Z}_n^\times$ s.t. $x^{n-1} \not\equiv 1 \pmod{n}$

- $B = \{ b \in \mathbb{Z}_n^\times \mid b^{n-1} = 1 \pmod{n} \}$
- B is a subgroup (closed under multiplication)
- Every nonwitness $a \in B$
- But there is $x \in \mathbb{Z}_n^\times$ s.t. $x^{n-1} \not\equiv 1 \pmod{n} \Rightarrow B \neq \mathbb{Z}_n^\times$
Show all nonwitnesses are in a proper subgroup of \mathbb{Z}_n^\times

Case 2: For all $x \in \mathbb{Z}_n^\times$, $x^{n-1} = 1 \mod n$

- Introduction to algorithms by Cormen, Leiserson, Rivest.
Generating pseudoprimes.

Prime number theorem

Let \(\pi(n) = \# \{ p \in \mathbb{N} | p \leq n, p \text{ is a prime} \} \) then

\[
\lim_{n \to \infty} \frac{\pi(n)}{n / \ln n} = 1
\]

- \(\pi(n) \approx \frac{n}{\ln n} \) for large enough \(n \)

\[
\frac{x}{\ln x} \left(1 + \frac{1}{2 \ln x}\right) < \pi(x) < \frac{x}{\ln x} \left(1 + \frac{3}{2 \ln x}\right), \text{ if } x \geq 59
\]
Generating pseudoprimes.

If \(\pi(n) \approx \frac{n}{\ln n} \) then

- \(\frac{1}{\ln n} \) is an estimate of the probability that a randomly chosen integer \(n \) is prime (even less if consider odd integers)
- To obtain a prime of the same length as \(n \) we need to examine about \(\ln n \) random integers
Generating pseudoprimes.

PROCEDURE Pseudoprime

INPUT: Size of prime B, number of repetitions s

OUTPUT: Pseudoprime p, $B < p \leq 2B$

1: REPEAT

2: Generate p uniform random s.t. $B < p \leq 2B$

3: IF MillerRabin(p, s) returns PROBABLY PRIME

4: RETURN p
Generating pseudoprimes.

For a given B and s the probability of output being a prime is at least

$$1 - 2^{-s+1} \ln B$$
Generating pseudoprimes.

Proof.

- Let $P = \{p \mid B < p \leq 2B, p \text{ is a prime}\}$
- $|P| = \pi(2B) - \pi(B) \geq \frac{B}{2\ln B}$, where $B \geq e^6$
- Therefore,

$$\text{Prob}(p \text{ is prime}) \geq \frac{|P|}{B} \geq \frac{1}{2\ln B}$$
Generating pseudoprimes.

Proof.

- C - event that random number is composite,
- T - event that Miller Rabin test returned PROBABLY PRIME.
- $Pr(p \text{ is a prime}) \leq Pr(T)$
- $Pr(C|T) = Pr(C, T)/Pr(T)$
- Now we have:

\[
\frac{1}{2 \ln B} Pr(C|T) \leq Pr(p \text{ is prime})Pr(C|T) \leq Pr(T)Pr(C|T) \\
= Pr(C, T) \leq Pr(C, T)/Pr(C) \\
\leq 2^{-s}
\]

\[
Pr(C|T) \leq 2^{-s}2 \ln B
\]
Generating pseudoprimes.

\(Pr(C|T) \leq 2^{-s}2\ln B \)

- \(Pr(C|T) \) is the probability of the output being a composite number.

- Probability of the output being a prime number is

\[
1 - Pr(C|T) \geq 1 - 2^{-s}2\ln B
\]