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Abstract—Commutativity of data structure methods is of
ongoing interest, with roots in the database community. In
recent years there has been renewed interest, with results
showing that commutativity is a key ingredient to enabling
multicore concurrency in contexts such as parallelizing compilers,
transactional memory, speculative execution and, more broadly,
software scalability. Despite this interest, it remains an open
question as to how a data structure’s commutativity condition
can be verified automatically from its implementation. Existing
strategies based on ADT specifications struggle to find the right
assertion granularity; and commutativity cannot be reduced to
2-safety in a straightforward way.

We describe techniques to automatically prove the correct-
ness of method commutativity conditions from data structure
implementations. The key enabling insight is to characterize the
precision necessary for commutativity reasoning using, what we
call, mn-differencing relations. We then describe a reduction to
reachability that decomposes the problem using mn-differencing
relations and observational equivalence relations. Finally, we
describe a proof-of-concept implementation and encouraging
preliminary experiments, verifying commutativity of simple data
structures such as a memory cell, counter, two-place Set, array-
based stack, queue and a rudimentary hash table.

Source code is available (perhaps with help from the PC
chair) at http://www.erickoskinen.com/cityprover/.

I. INTRODUCTION

For an object o, with state σ let o.m(x̄)/r̄ denote a
method signature, including a vector of corresponding return
values r̄. Commutativity of two methods, denoted o.m(x̄)/r̄ ./
o.n(ȳ)/s̄, are circumstances where m and n, when applied in
either order, lead to the same final state and agree on the
intermediate return values r̄ and s̄. A commutativity condition
is a logical formula ϕnm(σ, x̄, r̄, ȳ, s̄) indicating whether the
two operations will always commute from σ.

Commutativity conditions are typically much smaller than
full specifications, yet they are powerful: it has been shown
that they are an enabling ingredient in correct, efficient con-
current execution in the context of parallelizing compilers [1],
transactional memory [2], [3], [4], optimistic parallelism [5],
speculative execution, features [6], layer concurrent pro-
grams [7], and software scalability [8]. If two code fragments
commute then, when combined with linearizability (for which
proof techniques exist, e.g.,[9], [10]) they can be executed
concurrently. It is thus important that commutativity be correct
and, in recent years, growing effort has been made toward
reasoning about commutativity conditions automatically. At
present, these works are either unsound [11], [12] or else they

rely on data structure specifications as intermediaries [13],
[14], which has pitfalls (see Sec. II).

Intuitively, commutativity is a multi-trace property: relating
the behaviors in one circumstance with those in another. It is
therefore tempting to pose the problem as a k-safety problem
and attempt to leverage existing techniques for k-safety [15],
[16], [17], [18], [19]. As we detail in Section II, however, the
reduction is not immediate: the post-condition for commutativ-
ity necessitates a weaker notion than concrete equivalence and
approaches that attempt to use specifications [13], [14] struggle
to determine what granularity is appropriate for commutativity.
Weak specifications lead to unsound conclusions, while strong
specifications are unnecessarily burdensome to derive.

Contributions. We describe the first methods for verifying
a given commutativity condition of a data structure, directly
from its source code.
(1) We begin with a reduction REDUCEnm to automaton
reachability that is designed to strengthen the pre-condition
by only considering reachable data-structure states and weaken
the notion of data-structure equivalence in the post-condition
to observational equivalence. (Sec. IV) Although REDUCEnm
is sound, reachability solvers struggle to verify the resulting
encoding: their abstraction strategies lack the ability to decom-
pose the problem in a manner suitable to commutativity.
(2) To resolve this issue, we return to the question of find-
ing the appropriate abstraction granularity for commutativity.
We introduce the concept of an mn-differencing abstraction
(α,Rα) which gives a requirement for how precise an ab-
straction α must be so that one can reason in that abstract
domain and relate abstract post-states with Rα, and yet entail
return value agreement in the concrete domain. Intuitively,
Rα captures the differences between the behavior of pairs
of operations when applied in either order, while abstracting
away state mutations that would be the same, regardless of
the order in which they are applied. Rα-related post-states
may not yet be equivalent. We show the pieces fit together
by using an observational equivalence relation Iβ . Proving Iβ
is an observational equivalence relation can be done using a
separate abstraction β that is more appropriate for that con-
cern. Theorem V.1 shows that a proof using this decomposition
entails that ϕnm is a valid commutativity condition.
(3) We introduce a second reduction DAREDUCEnm, which
exploits mn-differencing and observational equivalence re-
lations. DAREDUCEnmemits two reachability tasks: automata
AA(ϕnm, I) and AB(I). Notably, AB(I) is independent of m,n



class SimpleSet {
private int a, b, sz;
SimpleSet() { a=b=−1; sz=0; }
void add(uint x) {

if (sz == 0) { a=x; sz++; ret ; }
if (a==x || b==x) { ret ; }
if (a==−1) { a=x; sz++; ret; }
if (b==−1) { b=x; sz++; ret; }
ret ;
}
bool isin ( uint y) {

ret (a==y||b==y);}
bool getsize { ret sz; }
void clear { a=−1; b=−1; sz=0; }
}

class ArrayStack {
private int A[MAX], top;
ArrayStack() { top = −1; }
bool push(int x) {

if (top==MAX−1) ret false;
A[top++] = x;
ret true;
}
int pop() {
if (top == −1) ret −1;
else ret A[top−−]; }

bool isempty() {
ret (top==−1); }

}

Fig. 1. On the left, a SimpleSet data structure, capable of storing up to two
non-zero identifiers (using fields a and b) and tracking the size sz of the Set.
On the right, a simple array-based stack, ArrayStack.

and ϕnm, so it can be proved safe once and then reused for
every subsequent ϕnm query. DAREDUCEnm allows reachability
analyses to synthesize separate abstractions α and β for
AA(ϕnm, I) and AB(I), respectively.
(4) We implement REDUCEnm and DAREDUCEnm in a new tool
called CITYPROVER1. (Sec. VII) It takes as input simple data
structures in C (with integers, arrays, and some pointers) and a
candidate formula ϕnm. CITYPROVER employs Ultimate’s [20]
or CPAchecker’s [21] reachability analyses to prove safety of
the automata tasks (or generate counterexamples).
(5) We report encouraging preliminary results that
CITYPROVER can verify commutativity properties of
some simple numeric data structures such as a memory
cell, counter, two-place Set, array stack, array queue and
rudimentary hash table. (Sec. VIII) We also show that
DAREDUCEnm scales better than REDUCEnm. Commutativity
conditions can be fairly compact so, with CITYPROVER,
a user can guess commutativity conditions and rely on
CITYPROVER to prove them or report counterexamples.

Limitations. We focused on numeric programs but mn-
differencing abstractions and our reductions generalize to
heap programs, left for future work. Our reductions highlight
some limitations of existing reachability solvers, namely, the
need for improved disjunctive reasoning about permutations,
a subject we leave to future work. We plan to release our
benchmarks to SVCOMP so that can be used in the future.

II. MOTIVATING EXAMPLES

Consider the SimpleSet data structure at the left of Fig. 1.
This data structure is a simplification of a Set, capable of
storing up to two natural numbers using private integers a
and b. Value −1 is reserved to indicate that nothing is stored
in the variable. Method add(x) checks to see if there is space
available and that x is not already in the Set, and then stores
x in an open slot (either a or b). ret means return. Methods
isin (y), getsize() and clear() are straightforward.

Methods isin (x) and isin (y) always commute because
neither modifies the ADT, so we say ϕ

isin (y)
isin (x) ≡ true. Com-

1Released soon. Available at https://file.io/V0GSL5Qe.

mutativity of add(x) and isin (y) is more involved:
ϕ

isin (y)
add(x) ≡ x 6= y ∨ (x = y ∧ a = x) ∨ (x = y ∧ b = x)

This condition specifies three situations (disjuncts) in which
the two operations commute. In the first case, the methods are
operating on different values. Method isin (y) is a read-only
operation and since y 6= x, it is not affected by an attempt to
insert x. Moreover, regardless of the order of these methods,
add(x) will either succeed or not (depending on whether
space is available) and this operation will not be affected
by isin (y). In the other disjuncts, the element being added
is already in the Set, so method invocations will observe the
same return values regardless of the order and no changes (that
could be observed by later methods) will be made by either
of these methods. Note that there can be multiple concrete
ways of representing the same semantic data structure state:
a = 5 ∧ b = 3 is the same as a = 3 ∧ b = 5. Other
commutativity conditions include: ϕclear

isin (y) ≡ (a 6= y∧b 6= y),

ϕ
getsize
isin (y) ≡ true, ϕclear

add(x) ≡ false, ϕgetsize
clear ≡ sz = 0 and

ϕ
getsize
add(x) ≡ a = x∨b = x∨(a 6= x∧a 6= −1∧b 6= x∧b 6= −1).
As a second running example, consider an array based im-

plementation of Stack, given at the right of Fig. 1. ArrayStack
maintains array A for data, a top index to indicate end of the
stack, and has operations push and pop. The commutativity
condition ϕpop

push(x) ≡ top > −1 ∧ A[top] = x ∧ top < MAX
captures that they commute provided that there is at least one
element in the stack, the top value is the same as the value
being pushed and that there is enough space.

The above examples illustrate that commutativity condi-
tions, even for small data-structures, can quickly become tricky
to reason about. Nonetheless, correctness of these conditions
is important because many parallelization strategies [2], [3],
[5], [6], [7], [8] crucially depend on them being correct and, if
they aren’t, then parallelization becomes unsafe. Despite some
attempts [12], [13], [11], [14], to our knowledge, there are no
sound techniques for verifying commutativity conditions from
source code. We will now discuss what’s lacking in the state of
the art, answering (i) why these existing works are insufficient
and (ii) why the problem cannot easily be reduced to 2-safety.

What’s hard about this problem? At first, commutativity
seems like it could be easily reduced to a 2-safety problem.
To prove that ϕnm is a commutativity condition for m(x̄) ./
n(ȳ), one could attempt to pose the problem as a 2-safety
verification, perhaps using the following Hoare quadruple:

{ϕnm ∧ σ1 = σ2}
r1
m := m(ā); r2

n := n(b̄);
r1
n := n(b̄); r2

m := m(ā);
{r1
m = r2

m ∧ r1
n = r2

n ∧ σ′1 = σ′2}

This would be convenient because it would allow us to use
existing 2-safety tools such as Descartes [18] or Weaver [19].
If we try the ArrayStack ϕpop()

push(x) ≡ A[top] = x ∧ top >
1∧ top < MAX example, running an existing tool (e.g. using
a product program [17] and Ultimate [20]) yields a counterex-
ample, with the starting state: A = [z, y, x, α] ∧ top = 2.
The counterexample shows that in this case the post states



are different. Depending on the order methods are applied,
one reaches either A = [z, y, x, α] ∧ top = 2 or else
A[z, y, x, x] ∧ top = 2. Our knowledge of the semantics of a
stack tell us that these are the same state (because the garbage
in the 3rd array slot does not matter), but automated tools do
not know these states are equivalent: concrete equality is too
strict. Similarly, for SimpleSet ϕadd(y)

add(x) ≡ x 6= y we would
obtain a counterexample complaining that (a = x∧ b = y) is
different from (a = y ∧ b = x).

It appears we need a better notion of equality for the post-
states. We might then be tempted to exploit specifications,
as in Kim and Rinard [13] and Bansal et al. [14]. Then
we ask whether Postm(Postn(σ1)) = Postn(Postm(σ1)).
One limitation with this strategy is that specifications are
not always available, especially for ad hoc data structures
and inferring such specifications is difficult. However, there
is a bigger issue: it is unclear what precision is appropriate
for commutativity. Consider a coarse specification such as
{true}push(x){true}. Using this specification in our Hoare
quad may lead to a post-relation {true}, which seems
to indicate that all post-states are related and we would
be inclined to incorrectly conclude that any ϕnm is a valid
commutativity condition. When specifications are too coarse
like this one, Bansal et al. [14] would incorrectly synthesize
commutativity condition ϕ

push(y)
push(x) ≡ true. The problem is

that abstraction does not capture effects of push(x) that are
relevant to commutativity.

Alternatively, we might try a more-fine grained specification
using, e.g., a sequential S to represent the stack and carefully
relating every post-state to the pre-state, with disjunction to
account for the various cases, etc. Such fine-grained specifica-
tions are particularly hard to come by for programmers’ home-
grown data structures, especially at this granularity that is
nearly full-functional verification. Moreover, it isn’t clear that
we need this level of granularity: much of the post-condition
is irrelevant to commutativity. When considering push(x) and
pop, the interaction is limited to the top element of the stack
(as well as whether the stack is empty or full), whereas the
deeper part of the stack is the same regardless of the order of
these methods.

Challenges & Contributions. To begin, in Sec. IV we
introduce a “one shot” reduction REDUCEnm from verifying
commutativity conditions of an ADT to a (single) automa-
ton reachability problem. REDUCEnm accounts for a few key
factors. First, we observe that the reduction can be done pair-
wise, focusing the problem on the method pair m,n of concern.
Second, REDUCEnm ensures that we only concern ourselves
with commutativity from reachable states of the object. Third,
in the post-relation, we exploit the automaton-based treatment
to weaken the notion of equivalence to observational equiva-
lence. We prove REDUCEnm to be sound but demonstrate that
it does not lead to scalable tools. Reachability solvers struggle
to effectively decompose the problem.

We thus return to the question, What is the right abstraction
granularity for commutativity? which foiled prior works. We

first observe that the necessary precision depends on methods
under consideration. For example, with SimpleSet and com-
mutativity of isin (y)/clear, it is sufficient to use an abstraction
that ignores sz. We only need to reason about whether y is
stored in a or b. We can use, e.g., a predicate abstraction with
predicates a = y and b = y (along with their negations). This
also ignores all other possible values for a and b: for showing
return value agreement, the only relevant aspect of the state
is whether or not y is in the set. Similarly, for ArrayStack
push(x)/pop(), we only need to consider the top value and
we can abstract away deeper parts of the stack. While, on the
other hand, for pop() ./ pop(), the second-from-top matters.

In Sec. V we present mn-differencing abstraction, which
formalizes this intuition. We give a requirement for an ab-
straction α and a relation Rα in that domain, that it be precise
enough so that reasoning about return value agreement in the
abstract domain faithfully covers reasoning about agreement
in the concrete domain. For SimpleSet , we can define α based
on the above predicates, and then use the relation:
Rα(σ1, σ2) ≡ [(a = x)1∨(b = x)1]⇔ [(a = x)2∨(b = x)2],
i.e. the relation that tracks if σ1 and σ2 agree on those
predicates. Rα is a relation on abstract states whose purpose
is to “summarize” the possible pairs of post-states that will
have agreed on return values.

States that are related by Rα may not necessarily be
observationally equivalent and, thus far, we don’t have a way
of summarizing observational equivalence. We next show
that the pieces fit together by working with observational
equivalence relations. For reasoning about this equivalence,
we use a separate abstraction β and a relation Iβ in that
abstract domain and describe the (standard) conditions
under which Iβ implies observational equivalence. For the
ArrayStack and SimpleSet examples, we can use:
IAS(σ1, σ2) ≡ top1 = top2 ∧ (∀i ∈ [0, top1]. a1[i] = a2[i])
ISS(σ1, σ2) ≡ ((a1 = a2 ∧ b1 = b2) ∨ (a1 = b2 ∧ b1 = a2))

∧ (sz1 = sz2)
IAS says the two states agree on the (ordered) values in the
Stack. (top1 means the value of top in σ1.) ISS specifies
that two states are equivalent provided that they are storing
the same values—perhaps in different ways—and they agree
on the size. These relations are simpler than full ADT
specifications. Putting it all together, Theorem V.1 shows that
if there is an Rα and Iβ such that ϕnm “implies” Rα and Rα
”implies” Iβ , then ϕnm is a valid commutativity condition.

An outcome of this decomposition is that reasoning about Iβ
(which pertains to all methods of the ADT) can be separated
from reasoning about Rα (which pertains to a given triple
m,n, ϕnm). Consequently, the first part can be done once, and
then the second part can be done for each new commutativity
validity query. In Sec. VI we describe a more modular re-
duction DAREDUCEnm, which employs mn-differencing and
observational equivalence relations. DAREDUCEnm emits a
pair of automata AA(ϕnm, I) and AB(I), such that the safety
of the former entails that ϕnm ⇒ Rα and that Rα ⇒ Iβ while
the safety of the latter entails that Iβ captures observational
equivalence.



Finally, in Sec. VII we describe a preliminary implementa-
tion CITYPROVER and in Sec. VIII we show itcan verify com-
mutativity properties of some simple data structures. We also
show that DAREDUCEnm is more tractable than REDUCEnm.

III. PRELIMINARIES

Language of ADT implementations. We work with a simple
model of a (sequential) object-oriented language. Objects can
have member fields o.a and, for the purposes of this paper,
we assume them to be integers, structs or integer arrays. We
use ā to denote a vector of argument values, ū to denote a
vector of return values and m(ā)/ū to denote a corresponding
invocation of a method which we call an action. Methods’
source code is parsed from C into control-flow automata
(CFA) [22], discussed in the next Section. Edges are labeled
with straight-line code denoted s. For simplicity, we assume
one object method cannot call another, and all object methods
terminate. Non-terminating object methods are typically not
useful and their termination can be confirmed using existing
termination tools (e.g. [23], [24], [25], [26], [20]).

We fix a single object o, denote that object’s concrete state
space Σ. We denote σ

m(ā)/ū−−−−−→ σ′ for the big-step semantics
in which the arguments are provided, and the entire method
is reduced. We omit the small-step semantics [[s]]. For the big-
step semantics, we assume that such a successor state σ′ is
always defined (total) and is unique (determinism). Programs
can be transformed so these conditions hold, via wrapping [14]
and prophecy variables [27], resp.

Definition III.1 (Observational equivalence for commutativity
(e.g. [4])). We define relation '⊆ Σ×Σ as the following gfp:

∀m(ā). σ1
m(ā)/r̄−−−−→ σ′1 σ2

m(ā)/s̄−−−−→ σ′2 r̄ = s̄ σ′1 ' σ′2
σ1 ' σ2

The above definition expresses that two states σ1 and σ2 of
an object are observationally equivalent ' provided that, when
any given action m(ā) is applied to both σ1 and σ2, then the
respective return values agree. Moreover, the resulting post-
states maintain the ' relation. An observational equivalence
relation I is a relation such that I ⇒'.

We next use observational equivalence to define commu-
tativity ([28], [14]) first at the layer of an action, which are
particular values, and second at the layer of a method.

Definition III.2 (Commutativity). For methods m and n, and
values ā, b̄, ū, v̄, actions o.m(ā)/ū and o.n(b̄)/v̄ commute,

denoted o.m(ā)/ū ./ o.n(b̄)/v̄, if for all σ, if σ
m(ā)/ū−−−−−→

σm
n(b̄)/v̄−−−−→ σmn and σ

n(b̄)/v̄−−−−→ σn
m(ā)/ū−−−−−→ σnm then σmn '

σnm. (Action commutativity requires return value agreement.)
Methods o.m and o.n commute denoted o.m ./ o.n provided
that ∀ā b̄ ū v̄. o.m(ā)/ū ./ o.n(b̄)/v̄.

Quantification ∀ā b̄ ū v̄ above means vectors of all possible
argument and return values. Our work extends to a more fine-
grained notion of left-movers and right-movers [29].

We denote a commutativity condition as ϕnm and assume a
decidable interpretation of formulae: [[ϕnm]] : (σ, x̄, ȳ, r̄, s̄) →
B. The first argument is the initial state. Commutativity post-
and mid-conditions can also be written [13] but for simplicity
we focus on pre-conditions.

Definition III.3 (Commutativity Condition). We say that a
formula ϕnm is a commutativity condition for m and n provided
that ∀σ ā b̄ ū v̄. [[ϕnm]] σ ā b̄ ū v̄ ⇒ m(ā)/ū ./ n(b̄)/v̄.

IV. ONE-SHOT REDUCTION TO REACHABILITY

We now describe an algorithm for reducing the task of
verifying commutativity condition ϕnm to reachability, which
incorporates only reachable object states in the precondition,
and employs observational equivalence for reasoning about
data structure equality. The algorithm is a transformation
REDUCEnm from an input object CFA to an output automaton
A(ϕnm) with an error state qer. We prove if qer is unreachable
in A(ϕnm), then ϕnm is a valid commutativity condition.

Object Implementations. Our formalism needs a represen-
tation of object implementations, and the output encoding. We
build on the well-established notion of control-flow automata:

Definition IV.1 ([22]). A (deterministic) control flow au-
tomaton A = 〈Q, q0, X, s,−−�〉 is a finite set Q of con-
trol locations, initial location q0, set X of typed variables,
loop/branch-free statement language s and finite set of labeled
edges −−�⊆ Q× s×Q.

We summarize other standard definitions (more de-
tail in [30].). We define a valuation of variables θ : X → Val
and θ′ ∈ [[s]]θ. A run r = q0, θ0, q1, θ1, q2, . . . . We say A can
reach automaton state q provided there exists a run to q. We
use qer as a special error state. We next conservatively extend
CFAs to represent data structure implementations:

Definition IV.2 (Object implementation CFAs). An object
impl. CFA for object o with methods M = {m1, ...mk}, is:

Ao = 〈Qo, [qinit
0 , qclone

0 , qm1
0 , . . . , qmk

0 ], Xo, s,−−�〉
Xo = Xst ∪ {thiso}

⋃
f∈M∪{init,close}(X

f ∪Xf
x̄f
∪Xf

r̄f )

(Detailed explanation in [30].)

Above, we will call each qmi
0 node the entry node for

the implementation of method mi and we additionally re-
quire that, for every method, there is a special exit node
qmi
ex . We require that the edges that lead to qmi

ex contain
return(v̄) statements. Subsets of variables Xo are reserved
for object fields, this, method-local variables, parameters and
return variables. For incorporating data structure implemen-
tations, we use inlining sugar: q −−inl(mi, o, x̄, r̄) −−�E
q′ ≡ {q

x̄i:=x̄;
−−−−−−�E qmi

0 , qmi
ex

r̄:=r̄i;−−−−−−�E q′} This defini-
tion emulates calls to a method mi, starting from CFA node
q. Values x̄ are provided as arguments, and arcs are created to
the entry node qmi

0 for method mi. Return values are saved
into r̄ and there is an arc from the exit node qmi

ex to q′.
Edges are required to be deterministic. This is not without

loss of generality: nondeterminism can be supported through



A(ϕ
isin (y)
add(x) ) ≡

1 SimpleSet s1 = new SimpleSet();
2 while(*) { int t = *; assume (t>0); switch(*) {
3 case 1: s1.add(t); case 2: s1.isin(t);
4 case 3: s1.size(); case 4: s1.clear(); }}
5 int x = *; int y = *;
6 assume( ϕ isin (y)

add(x)
(s1,x,y) );

7 SimpleSet s2 = s1.clone();

(A)

// Precondition: ϕ isin (y)
add(x)

and any reachable object state, duplicated

5
r1m = s1.add(x); r2n = s1. isin (y);
r1n = s2. isin (y); r2m = s2.add(x);

6 if(r1m 6=r2m ||r1n 6=r2n) ERR;
(B)

// Postcondition: Now must show observational equivalence s1 ' s2
11 while(true) { int t = *; assume (t>0); switch(*) {
12 case 1: if(s1.add(t) 6= s2.add(t)) ERR;
13 case 2: if(s1.isin(t) 6=s2.isin(t)) ERR;
14 case 3: if(s1.clear() 6= s2.clear()) ERR;
15 case 4: if(s1.size() 6= s2.size()) ERR; } }

(C)

Fig. 2. An example of REDUCEnm, when applied to the source of add(x)
and isin (y). Formally, the result is an automaton but here it is depicted as a
program. When a candidate ϕ

isin (y)
add(x)

is supplied to this encoding, a proof of

safety entails that ϕ isin (y)
add(x)

is a commutativity condition.

prophecy variables (see [31]). The semantics (q, θ)
s
−−−�

(q′, θ′) of Ao induce a labeled transition system, with state
space ΣAo

= Qo × Θ. Naturally, commutativity of an object
CFA is defined in terms of this induced transition system.

Example: SimpleSet. We first illustrate REDUCEnm by
demonstrating the result of applying it to the Simple-
Set example from Section II. Fig. 2 shows the output of
REDUCEnm(ASS ,add(x), isin (y)), which is an automaton de-
noted A(ϕ

isin (y)
add(x) ) represented in pseudocode. Note ERR is

qer. A(ϕ
isin (y)
add(x) ) should never be executed. Rather, when a

program analysis tool for reachability is applied, the tool is
tricked into finding abstractions to prove commutativity. There
are three main portions to A(ϕ

isin (y)
add(x) ):

(A) Establishing the pre-condition. For any reachable abstract
state σ of the SimpleSet object, there will be a run of
A(ϕ

isin (y)
add(x) ) such that the SimpleSet on Line 7 will be in state

σ. A program analysis will consider all runs that eventually
exit the first loop (we don’t care about those that never
exit), and the corresponding reachable state s1. From s1,
A(ϕ

isin (y)
add(x) ) assumes that provided commutativity condition

ϕnm on Line 6 and runs will clone s1.
(B) Product program. We next employ a standard product-
program construction [17], using a trivial alignment. This
portion causes a program analysis to consider the effects of the
methods applied in each order, and whether or not the return
values will match on Line 6.
(C) Post-condition with observational equivalence. Lines 11-
15 consider any sequence of method calls m′(ā′),m′′(ā′′), . . .
that could be applied to both s1 and s2. If observational equiv-
alence does not hold, then there will be a run of A(ϕ

isin (y)
add(x) )

that applies that sequence to s1 and s2, eventually finding a
discrepancy in return values and going to qer.

Transformation REDUCEnm. The above example provides

intuition and, for lack of space, the details of the following
definition are in Appendix A.

Definition IV.3 (REDUCEnm). For an input CFA
Ao = 〈Qo, [qc0, qinit

0 , qm1
0 , . . . , qmk

0 ], Xo, s,−−�〉, the output
of REDUCEnm(Ao,m(x̄), n(ȳ)) is automaton A(ϕnm) given in
Appendix A.

We now show A(ϕnm)’s safety entails commutativity.

Theorem IV.1. For object implementation Ao and resulting
encoding A(ϕnm), if every run of A(ϕnm) avoids qer , then ϕnm
is a commutativity condition for m(x̄) and n(ȳ).

Proof Sketch. By case analysis on the runs of A(ϕnm), corre-
lating the variables in the valuation θ with the object state.

While REDUCEnm is sound, we show in Sec. VIII that tools
don’t scale well at proving the safety of REDUCEnm’s output. In
the next Sec. V we describe an abstraction targeted at proving
commutativity to better enable automated reasoning.

V. mn-DIFFERENCING ABSTRACTION

As seen in Sec. VIII, REDUCEnm generates an output verifi-
cation task for which existing tools do not perform well. We
now describe how to decompose the reduction into pieces. The
challenge is thus: what kind of abstraction is coarse enough to
be tractable, yet fine enough to reason about commutativity?
We now address this with mn-differencing abstractions and
later incorporate them into DAREDUCEnm. We first define
posts to be the set of all pairs of post-states originating from
σ after the methods are applied in the two alternate orders:

posts(σ,m, ā, n, b̄) ≡ {(σ1, σ2) |

σ
m(ā)/r̄1m−−−−−−→ σ′

n(b̄)/r̄1n−−−−−→ σ1 ∧ σ
n(b̄)/r̄2n−−−−−→ σ′′

m(ā)/r̄2m−−−−−−→ σ2}

Return value agreement rvsagree is a predicate indicating that
all such post-states agree on return values:

rvsagree(σ,m, ā, n, b̄) ≡ for r̄1
m, r̄

1
n, r̄

2
n, r̄

2
m then

σ
m(ā)/r̄1m−−−−−−→ σ1

n(b̄)/r̄2n−−−−−→ σ′1 ∧ σ
n(b̄)/r̄2n−−−−−→ σ2

m(ā)/r̄2m−−−−−−→ σ′2,
⇒ r̄1

m = r̄2
m and r̄2

n = r̄1
n

The idea of mn-differencing can be visualized as follows:

σ̂1 σ̂′1

σ1 σ′1

σ̂2 σ̂′2

σ2 σ′2

(σ1 = σ2) X

Rα
r1
m := m(ā); r1

n := n(b̄)

r2
n := n(b̄); r2

m := m(ā)

r̂1
m := m̂(ā); r̂1

n := n̂(b̄)

r̂2
n := n̂(b̄); r̂2

m := m̂(ā)

αnm αnm

αnm αnm

On the left, we start with states σ1 and σ2 that are exactly
equal. The product program leads to σ′1 and σ′2. For these
post states, we require return value agreement: X ≡ r1

m =
r2
m ∧ r1

n = r2
n . Next, we have an abstraction αnm, specific to

this m/n pair, and a product program in this abstract domain.
The key idea is that (i) relation Rα relates abstract post-

states whose return values agree in the abstract domain, and (ii)
α is required to be precise enough that return values agree for



all state pairs in the concretization of Rα. We can then check
whether an initial assumption of ϕnm on σ1 implies such an
Rα, i.e., checking return value agreement using α which is just
precise enough to do so. For isin (x)/clear, let α be a predicate
abstraction, with predicates {a = x,a 6= x,b = x,b 6= x} that
tracks whether x is in the set. Then
Rα(σ1, σ2) ≡ (a = x)1 ∨ (b = x)1 ⇔ (a = x)2 ∨ (b = x)2,
i.e. the relation that tracks if σ1 and σ2 agree on those
predicates. Formally, mn-differencing is defined as:

Definition V.1. For an object with state space Σ, and two
methods m and n. Let α : Σ → Σα be an abstraction of the
states, and γ : Σα → P(Σ) the corresponding concretization.
Let Rα : Σα → Σα → B be a relation on abstract states. We
say that (α,Rα) is an mn-differencing abstraction if

∀σα1 , σα2 ∈ Σα.Rα(σα1 , σ
α
2 )⇒

∀σāb̄. posts(σ,m, ā, n, b̄) ∈ γ(σα1 )× γ(σα2 )⇒
rvsagree(σ,m, ā, n, b̄)

A relation Rα may not hold for every initial state σ, hence
the need for a commutativity condition. So we need to ask
whether Rα holds, under the assumption that ϕnm holds in the
pre-condition, defined as follows:

Definition V.2. Let (α,Rα) be an mn-differencing ab-
straction and ϕnm a logical formula on concrete states
and actions of m and n. We say ϕnm implies (α,Rα) if
∀σ ā b̄ r̄ s̄. ϕnm(σ, ā, b̄, r̄, s̄) ⇒ Rα(α(σ1), α(σ2)) where
(σ1, σ2) = posts(σ,m, ā, n, b̄).

If we let ϕclear
isin (x) ≡ a 6= x ∧ b 6= x, this will imply Rα in the

posts: the post states will agree on whether x is in the set.
Post-state equivalence. States that are Rα-related are not

necessarily equivalent. We identify the next stage of rea-
soning with observational equivalence relations and separate
abstractions there for. This is a fairly standard definition of
observational equivalence relations [32]. Importantly, we can
use an abstraction β here that is separate from α. Formally,

Definition V.3. Let β : Σ → Σβ be an abstraction, with
concretiz. δ : Σβ → P(Σ), and let Iβ : Σβ × Σβ → B.
Iβ is an observational equivalence relation iff: ∀σβ1 σβ2 ∈
Σβ . Iβ(σβ1 , σ

β
2 )⇒ ∀σ1 ∈ δ(σβ1 ), σ2 ∈ δ(σβ2 ). σ1 ' σ2

ISS and IAS , defined earlier, are such relations. We connect
Rα with Iβ as follows:

Definition V.4. We say (α,Rα) implies (β, Iβ) iff:
∀σ1, σ2 ∈ Σ.Rα(α(σ1), α(σ2))⇒ Iβ(β(σ1), β(σ2))

To satisfy this implication, Rα may need to be more precise
than simply witnessing return value agreement. In the case of
SimpleSet, Rα must be refined so that it also implies that
sz1 = sz2 and (a1 = a2 ∧ b1 = b2) ∨ (a1 = b2 ∧ a2 = b1).

Finally, sufficient conditions for a commutativity condition
for the two methods, with respect to these abstractions are:

Theorem V.1. Let ϕnm be a logical formula on Σ and actions
of m and n. If there exists (αnm, R

n
m) and (β, Iβ), that ϕnm

implies (αnm, R
n
m) and (αnm, R

n
m) implies (β, Iβ) then ϕnm is

a commutativity condition. (Proof sketch in Apx. B.)

VI. REACHABILITY AND DIFFERENCING ABSTRACTIONS

We now employ mn-differencing abstractions to introduce
DAREDUCEnm that decomposes reasoning into two phases:
(A) finding a sufficient Rα that implies Iβ and then (B)
proving that Iβ is an observational equivalence relation. In
short, commutativity proving is reduced to the question:
∃I. ∃R. AA(ϕnm, R, I) is safe and AB(I) is safe

This allows tools separately synthesize abstractions β and α,
each targeted to the reachability needs of the phase. Moreover,
when operating on the automata from DAREDUCEnm, tools can
sometimes synthesize I and, in all cases we evaluated, tools
synthesized R. Finally, AB(I) turns out to be independent of
method pair and can be proved once for the ADT and then
commutativity conditions only need to be plugged into AA.

Definition VI.1 (DAREDUCEnm). For an input object CFA Ao,
DAREDUCE when applied to methods m(x̄), n(ȳ), yields two
automata A(ϕnm, I)A and A(I)B defined as follows:
Phase A: Proving that ϕnm ⇒ I via Rα:

A(ϕnm, I)A = 〈QA, q
0
A, XA, sA,−−�A〉 where −−�A is:

⋃



−−� (o’s source)
q0

A−inl( init , nil, [], [o1])−A q1 (Construct.)

∪mi

{
q1

x̄:=∗̄;
−−−−−�A q1i,

q1i−inl(m, o1, x̄, nil)−A q1

(Reachbl. o1)

q1

ā:=∗̄; b̄:=∗̄; assume(ϕn
m(o1,ā,b̄))

−−−−−−−−−−−−−−−−−−−−−−−�A q11 (Assume ϕnm)
q11−inl(clone, o1, [], [o2])−A q2 (Clone o1))
q2−inl(m, o1, ā, r̄

1
m)−A q21−inl(n, o1, b̄, r̄

1
n)−A q22

q22−inl(n, o2, b̄, r̄
2
n)−A q23−inl(m, o2, ā, r̄

2
m)−A q3

q3−inl(asm(r̄1
m 6= r̄2

m ∨ r̄2
n 6= r̄1

n))−A q
A
er (Rv’s agree)

q3−inl(asm(¬I))−A q
A
er (Ensure I)

Phase B: Proving that I is an obs. eq. relation via β:

A(I)B = 〈QB, q
0
B, XB, sB,−−�B〉 where −−�B is:

⋃


−−�, {q0
B

assume(I)
−−−−−−−−−�B q2} (o’s source)

∪mi



q2
ā:=∗̄
−−−−−�B q2i

q2i−inl(mi, o1, ā, r̄)−B q2i′

q2i′−inl(mi, o2, ā, s̄)−B q2i′′

q2i′′
assume(r̄ 6=s̄)
−−−−−−−−−−−�B q

B
er

q2i′′
assume(¬I)
−−−−−−−−−−�B q

B
er

(Any mi)

The definitions for QA, initial state q0
A, variables XA, state-

ments sA are straight-forward. Same for A(I)B.
The DAREDUCEnm output encoding A(ϕnm, I)A (Phase A),

like REDUCEnm, begins with a region that ensures that, for any
reachable state of the ADT, there will be a run of A(ϕnm, I)A
to location q1 where o is in that reachable state. It also sets up
the preconditions that ϕnm hold and that o1 = o2 (concretely)
and constructs the product program between the two orders of
method application. Unlike REDUCEnm, A(ϕnm, I)A ends with
a possible transition to qA

er whenever ¬I holds.



To prove that ¬I can never hold, an analysis on A(ϕnm, I)A
must establish an invariant at q3 that is (1) strong enough to
capture return value agreement and (2) strong enough to imply
I . This invariant will indeed be an mn-differencing relation
due to (1), and it will imply I due to (2).

The DAREDUCEnm output A(I)B (Phase B) is designed so
that a safety proof on A(I)B entails that I is an observational
equivalence relation. There is a pre-condition edge that as-
sumes I , and edges to the entry node of each possible method
mi, nondeterministically selecting arguments. To prove that I
is an observational equivalence relation, a reachability solver
will synthesized an appropriate abstraction β.

Theorem VI.1. For object CFA Ao, and automata A(ϕnm, I)A
and A(I)B resulting from DAREDUCEnm, if there exists an I
such that for every run of A(ϕnm, I)A avoids qA

er, and every run
of A(I)B avoids qB

er, then ϕnm is a commutativity condition.

Proof. Similar to the proof of Theorem IV.1 but employing
Theorem V.1 to combine phases.

DAREDUCEnm improves over REDUCEnm by decomposing
the verification problem, making it more tractable to au-
tomation (see Sec. VIII). One can employ a mn-differencing
abstraction α for finding Rα and a separate abstraction β for
observational equivalence. Phase B does not depend on the
method pair under consideration. Consequently, a proof of
safety of A(I)B can be done once for the entire ADT.

VII. IMPLEMENTATION

We developed a simple prototype implementation called
CITYPROVER2. CITYPROVER is written in Perl and OCaml
and takes, as input, C source code Examples input ADTs
can be found in Appendix E. We have written them as
C macros so that our experiments focus on commutativity
rather than testing existing tools’ inter-procedural reasoning.
Also provided as input is a commutativity condition ϕnm.
CITYPROVER then implements implements REDUCEnm and
DAREDUCEnm via a program transformation.

VIII. EXPERIMENTS

There are no other existing tools for verifying ADT commu-
tativity directly from source code. Our goals were to evaluate
whether our reductions enable existing reachability solvers to
verify commutativity conditions and whether DAREDUCEnm
performs better than REDUCEnm. To this end, we created some
small examples (with integers, simple pointers, structs and
arrays) and ran CITYPROVER on them. Our experiments were
run on a Quad-Core Intel(R) Xeon(R) CPU E3-1220 v6 at
3.00 GHz, inside a QEMU virtual host.

We began with simple ADTs including: a Memory cell; an
Accumulator with increment, decrement, and a check whether
the value is 0; and a Counter that also has a clear method.
For each object, we considered some example method pairs
with both a valid commutativity condition and an incorrect

2To be released on GitHub. See https://file.io/V0GSL5Qe.

Oneshot REDUCEnm DAREDUCEnm
ADT Methods ϕ

n(y1)
m(x1) Exp. CPA Ult CPA Ult

Memory rd ./ wr s1.x = y1 X 1.4 X 0.7 X 3.9 X 1 X
Memory rd ./ wr true χ 1.4 χ 0.2 χ 1.3 χ 0.2 χ
Memory wr ./ wr y1 = x1 X 1.4 X 0.5 X 3.9 X 0.8 X
Memory wr ./ wr true χ 1.3 χ 0.3 χ 2.4 χ 0.4 χ
Memory rd ./ rd true X 1.4 X 0.6 X 3.9 X 1 X
Accum. dec ./ isz s1.x > 1 X 1.5 X 2.2 X 4 X 2.6 X
Accum. dec ./ isz true χ 1.5 χ 0.7 χ 1.2 χ 0.6 χ
Accum. dec ./ inc s1.x > 1 X 1.5 X 1.3 X 4.1 X 1.7 X
Accum. dec ./ inc true X 1.5 X 1.2 X 4 X 1.5 X
Accum. inc ./ isz s1.x > 1 X 1.5 X 3.3 X 4.1 X 2.9 X
Accum. inc ./ isz true χ 1.6 χ 0.7 χ 1.2 χ 0.6 χ
Accum. inc ./ inc true X 1.4 X 1.5 X 4.1 X 1.6 X
Accum. dec ./ dec true X 1.5 X 1.5 X 3.9 X 1.6 X
Accum. dec ./ dec s1.x > 1 X 1.5 X 2.6 X 4 X 1.9 X
Accum. isz ./ isz true X 1.4 X 4.3 X 4 X 3.4 X
Counter dec ./ dec true χ 1.9 χ 1.5 χ 4.2 X7 1.2 χ
Counter dec ./ dec s1.x ≥ 2 X 1.5 X 13.0 X 4.1 X 5.9 X
Counter dec ./ inc true χ 1.6 χ 0.3 χ 1.4 χ 0.3 χ
Counter dec ./ inc s1.x ≥ 1 X 1.6 X 6.8 X 4.2 X 3.8 X
Counter inc ./ isz true χ 1.5 χ 0.8 χ 1.2 χ 0.7 χ
Counter inc ./ isz s1.x > 0 X 1.5 X 5.3 X 4.1 X 2.6 X
Counter inc ./ isz s1.x > 0 χ 1.9 ? TO ? 4.4 χ 6.9 χ
Counter inc ./ clr true χ 1.3 χ 0.4 χ 2.5 χ 0.4 χ

Fig. 3. Results of applying CITYPROVER to the simple benchmarks. For each
benchmark, we report the time to use REDUCEnm versus DAREDUCEnm. A
more detailed breakdown of DAREDUCEnm can be found in Appendix C.

commutativity condition (to check that the tool discovers a
counterexample).

The objects, method pairs, and commutativity conditions
are shown in the first few columns of Fig. 3, along with
the Expected result. We ran CITYPROVER using both the
REDUCEnm and DAREDUCEnm algorithms and, in each case,
compared using CPAchecker and Ultimate as the underlying
solver. For DAREDUCEnm, we report the total time taken
for both Phase A and Phase B. A more detailed version of
this table can be found in Appendix C. Benchmarks for
which A succeed can all share the results of a single run of
Phase B; meanwhile, when A fails, the counterexample can
be found without needing B. These experiments confirm we
can verify commutativity conditions from source. In one case,
CPAchecker returned an incorrect result. While DAREDUCEnm
often takes slightly more time (due to the overhead of starting
up a reachability analysis twice), it does not suffer from a
timeout (in the case of Counter inc/isz).

We next turned to data structures that store and manipulate
elements. For these ADTs, we mainly used Ultimate as we
had trouble tuning CPAchecker (perhaps owing to our limited
experience). In some cases (marked in blue), Ultimate failed
to produce a timely response for either reduction, so we
tried CPAchecker instead. The results of these benchmarks are
given in Fig. 4 and an extended version is in Appendix D..
For SimpleSet most cases where straightforward. In almost
all cases DAREDUCEnm outperformed REDUCEnm, with an
average speedup of 3.88×. ArrayStack. (Fig. 1) push(x)/pop
condition 1ϕpop

push is defined in Appendix D. REDUCEnm found
some counterexamples quickly. However, in the other cases
REDUCEnm ran out of memory, while DAREDUCEnm was able
to prove all cases. For Queue, CITYPROVER was able to
prove all but two commutativity conditions. We finally applied



ADT Methods REDUCEnm DAREnm
m(x1), n(y1) ϕ

n(y1)
m(x1) Exp. Ult Ult

SSet isin ./ isin true X 137.8 X 36.7 X
SSet isin ./ add x1 6= y1 X 84.8 X 37.1 X
SSet isin ./ add true χ 2.4 χ 1.5 χ
SSet isin ./ clear true χ 2.6 χ 1.6 χ
SSet isin ./ clear x1 6= y1 χ 2.4 χ 1.6 χ
SSet isin ./ clear a1 6= x1 ∧ b1 6= y1 χ 3.1 χ 1.4 χ
SSet isin ./ clear a1 6= x1 ∧ b1 6= x1 X 14.0 X 19.3 X
SSet isin ./ getsize true X 41.3 X 24.2 X
AStack push ./ pop a1[top] = x1∧top >

1 ∧ top < 5− 1
X MO – 95.5 X

AStack push ./ pop true χ 2.2 χ 2.0 χ
AStack push ./ push true χ 7.6 χ 17.0 χ
AStack push ./ push top < 3 χ 3.9 χ 230.7 χ
AStack push ./ push x1 = y1 χ 19.8 χ 17.3 χ
AStack push ./ push x1 = y1 ∧ top < 3 X MO – 155.1 X
AStack pop ./ pop top = −1 X TO – 38.0 X
AStack pop ./ pop true χ 2.1 χ 1.4 χ
Queue enq ./ enq true χ 39.8 χ 35.0 χ
Queue deq ./ deq true χ 3.5 χ 3.1 χ
Queue deq ./ deq size = 0 X TO – 174.4 X
Queue enq ./ enq true χ 27.8 χ 23.3 χ
Queue enq ./ enq x1 = y1 χ 63.8 χ 22.6 χ
Queue emp ./ emp true X TO – TO –
Queue enq ./ deq size = 1 ∧ x1 =

a1[front]
X TO – 472.0 X

Queue enq ./ deq true χ MO – 8.4 χ
Queue enq ./ emp size > 0 X MO – TO –
Queue enq ./ emp true χ MO – 7.4 χ
Queue deq ./ emp size = 0 X MO – 135.8 X
Queue deq ./ emp true χ MO – 6.5 χ

HashTable put ./ put 1ϕput
put χ 262.5 χ 97.5 χ

HashTable put ./ put 2ϕput
put χ 202.7 χ 136.9 χ

HashTable put ./ put 3ϕput
put X TO – TO –

Hashtable put ./ put 3ϕput
put X 566.5 X 297.5 X

HashTable put ./ put true χ TO – 102.3 χ
HashTable get ./ get o1.keys = 0 X TO – TO –
HashTable get ./ get true X TO – TO –
HashTable get ./ get true X 50.0 X 56.8 X
HashTable get ./ put x1 6= y1 X TO – TO –
HashTable get ./ put true χ 1.3 χ 0.9 χ

Fig. 4. Results of applying CITYPROVER to ArrayStack, SimpleSet and
Queue. A more detailed breakdown of DAREDUCEnm can be found in
Appendix D.

CITYPROVER to a simple HashTable, where hashing is done
only once and insertion gives up if there is a collision.

In some cases CITYPROVER caught our mistakes/typos.
We also tried to use CITYPROVER to help us narrow down
on a commutativity condition via repeated guesses. In the
HashTable example the successive conditions iϕput

put (defined
in Appendix D.) represent our repeated attempts to guess
commutativity conditions. CITYPROVER’s counterexamples
pointed out collisions and capacity cases. For Hashtable Phase
B, Ultimate had some trouble mixing modulus with array
reasoning, so we used CPAchecker. We also had to introduce a
prophecy variable to assist the verifiers in knowing that array
index equality distributes over modulus of equal keys.

DAREDUCEnm can be amended so that it coërces tools
to infer Iβ (as well as Rα). For small examples, we could
get Ultimate to infer Iβ . For bigger examples, we manually
provided I , but Ultimate discovered an appropriate abstraction
β. For all examples, Ultimate inferred an Rα.

CITYPROVER, especially with DAREDUCEnm can promptly
validate commutativity conditions for these 38 examples. For

DAREDUCEnm, in 7 cases it took more than 2 minutes, and in
6 cases it reached the 15 minute timeout.

IX. RELATED WORK

a) Commutativity reasoning: Bansal et al. [14] synthe-
size commutativity conditions from provided pre/post spec-
ifications, rather than implementations. They assume these
specifications are precise enough to faithfully represent all
effects relevant to commutativity. As discussed in Section II,
if specifications are coarse, Bansal et al. would emit un-
sound commutativity conditions. On the other hand, precise
specifications are harder to come by (by hand or by static
analysis) because the precision needed may be tantamount to
full functional correctness specifications. We instead capture
just what is needed for commutativity.

Gehr et al. [11] describe a method based on black-box sam-
pling. Both Aleen and Clark [12] and Tripp et al. [33] identify
sequences of actions that commute (via random interpretation
and dynamic analysis, resp.). Kim and Rinard [13] verify
commutativity conditions from specifications. Commutativity
is also used in dynamic analysis [28]. Najafzadeh et al. [34]
describe a tool for weak consistency, that reports commutativ-
ity checking of formulae, but not ADT implementations.

b) k-safety, product programs, reductions.: Reduc-
tions to reachability have been used in security. Self-
composition [15], [16]—reduces (some forms of) hyper-
properties [35] to properties of a single program. More recent
works include product programs [17], [36] and a number
of techniques for automated verification of k-safety prop-
erties. Cartesian Hoare Logic [18] is a program logic for
reasoning about k-safety properties, automated via a tool
called DESCARTES. Antonopoulos et al. [37] described an
alternative automated k-safety technique based on partitioning
the traces. Farzan and Vandikas [19] discuss a technique
and tool WEAVER for verifying hypersafety properties, based
on the observation that a proof of some representative runs
in a product program can be sufficient to prove that the
hypersafety property holds of the original program. Others
explore logical approaches to relational reasoning across mul-
tiple programs [38], [39].

X. CONCLUSION

We have described a theory, algorithm and tool for automat-
ically verify commutativity conditions of data structure imple-
mentations. The key insight is that mn-differencing relations
can be used to target commutativity reasoning and this can be
employed in reduction DAREDUCEnm to decompose the prob-
lem to make it more amenable to general-purpose reachability
solvers. Our proofs can enable commutativity conditions to be
more safely integrated into various concurrency settings. In the
future work, we hope to explore techniques for more complex
data-structures, especially those with layout permutations.
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A(ϕn
m) = 〈QE , qE0 , XE , sE ,−−−�E〉 where −−−�E≡

∪



−−−� (o’s source)
qE0 −−inl( init , nil, [], [o1])−−−�E q1 (Construct.)

∪mi

{
q1

x̄:=∗̄;
−−−−−−�E q1i,

q1i −−inl(m, o1, x̄, nil)−−−�E q1

(Reachbl. o1)

q1

ā:=∗̄; b̄:=∗̄; assume(ϕn
m(o1,ā,b̄))

−−−−−−−−−−−−−−−−−−−−−−−−−�E q11 (Assume ϕn
m)

q11 −−inl(clone, o1, [], [o2])−−−�E q2 (Clone o1))
q2 −−inl(m, o1, ā, r̄1

m)−−−�E q21 (m;n for o1)
q21 −−inl(n, o1, b̄, r̄1

n)−−−�E q22

q22 −−inl(n, o2, b̄, r̄2
n)−−−�E q23 (n;m for o2)

q23 −−inl(m, o2, ā, r̄2
m)−−−�E q3

q3

assume(r̄1m 6=r̄2m∨r̄
2
n 6=r̄1n)

−−−−−−−−−−−−−−−−−−−−�E qer (Rv’s agree)
q3 −−−�E q4 (Loop)

∪mi


q4

ā:=∗̄
−−−−−−�E q4i

q4i −−inl(mi, o1, ā, r̄)−−−�E q4i′

q4i′ −−inl(mi, o2, ā, s̄)−−−�E q4i′′

q4i′′
assume(r̄ 6=s̄)
−−−−−−−−−−−−�E qer

q4i′′ −−−�E q4

(Any mi)

and QE is the union of Qo and all CFA nodes above, sE is the
union of s and all additional statements above, and XE = Xo ∪
{o1, o2, ā, b̄, r̄1

m, r̄2
n, r̄

1
n, r̄

2
m, nil, r̄, s̄}.

Fig. 5. One-shot reduction REDUCEnm emits automaton A(ϕn
m) defined

above.

APPENDIX

A. Transformation REDUCEnm

We now define REDUCEnm. Below we let assume(x̄ 6= ȳ)
mean the disjunction of inequality between corresponding
vector elements.

Definition A.1 (Transformation). For an input object CFA
Ao = 〈Qo, [qc0, qinit

0 , qm1
0 , . . . , qmk

0 ], Xo, s,−−�〉, the output
of REDUCEnm(Ao,m(x̄), n(ȳ)) is automaton A(ϕnm) given in
Figure 5.

In Figure 5 node qE0 is the initial node of the automaton.
The transformation employs the implementation source code
of the data structure CFA, given by −−�. The key theorem
below says that non-reachability of qer entails that ϕnm is a
commutativity condition. The key features of A(ϕnm) are:

1) Reachable ADT states. For any reachable object state σ,
there will be some run of A(ϕnm) that witnesses that state
in a valuation θ at q1. This is accomplished by edges from
q1 into the entry node of each possible mi, first letting
QE nondeterminsitically set arguments x̄.

2) Commutativity pre-condition. From q1, nondeterministic
choices are made for the method arguments m(ā) and
n(b̄), and then candidate condition ϕnm is assumed.

3) Product program. The edge to q2 causes a run to clone
o1 to o2, invoke m(ā);n(b̄) on o1 and invoke n(b̄);m(ā)
on o2.

4) Return values. From q3, there is an edge to qer which is
feasible if the return values disagree.

5) Obs. Equivalence. From q4, for any possible method
mi, there is an edge with a statement ā := ∗̄ to chose
nondeterministic values, and then invoke mi(ā) on both

o1 and o2. If it is possible for the resulting return values
to disagree, then a run could proceed to qer.

B. Proof of Theorem V.1

From Definition V.2, we have that R holds for the α-
abstraction of post states, and then from Definition V.1 it
follows that the return values agree. On the other hand, from
Definition V.4 it follows that Iβ holds for the β-abstraction of
post states as well, and from Definition V.3 it follows that the
(concrete) post states are observationally equivalent.



C. Detailed version of Figure 3
ADT Methods REDUCEnm DAREDUCEnm mn-differencing

m(x1), n(y1) ϕ
n(y1)
m(x1) Exp. CPA Ult CPA Ult

Memory read ./ write s1.x = y1 X 1.4X 0.7X 1.3 (X) + 1.3 (X) + oe = 3.9 X 0.3 (X) + 0.3 (X) + oe = 1X
Memory read ./ write true χ 1.4 χ 0.2 χ 1.3 (χ) + n/a(n/a) + oe = 1.3 χ 0.2 (χ) + n/a(n/a) + oe = 0.2 χ
Memory write ./ write y1 = x1 X 1.4X 0.5X 1.3 (X) + 1.3 (X) + oe = 3.9 X 0.2 (X) + 0.3 (X) + oe = 0.8X
Memory write ./ write true χ 1.3 χ 0.3 χ 1.2 (X) + 1.2 (χ) + oe = 2.4 χ 0.2 (X) + 0.2 (χ) + oe = 0.4 χ
Memory read ./ read true X 1.4X 0.6X 1.3 (X) + 1.3 (X) + oe = 3.9 X 0.3 (X) + 0.3 (X) + oe = 1X
Accum. decr ./ isz s1.x > 1 X 1.5X 2.2X 1.3 (X) + 1.4 (X) + oe = 4 X 0.7 (X) + 1.0 (X) + oe = 2.6X
Accum. decr ./ isz true χ 1.5 χ 0.7 χ 1.2 (χ) + n/a(n/a) + oe = 1.2 χ 0.6 (χ) + n/a(n/a) + oe = 0.6 χ
Accum. decr ./ incr s1.x > 1 X 1.5X 1.3X 1.3 (X) + 1.5 (X) + oe = 4.1 X 0.3 (X) + 0.4 (X) + oe = 1.7X
Accum. decr ./ incr true X 1.5X 1.2X 1.3 (X) + 1.4 (X) + oe = 4 X 0.3 (X) + 0.3 (X) + oe = 1.5X
Accum. incr ./ isz s1.x > 1 X 1.5X 3.3X 1.4 (X) + 1.4 (X) + oe = 4.1 X 0.6 (X) + 1.3 (X) + oe = 2.9X
Accum. incr ./ isz true χ 1.6 χ 0.7 χ 1.2 (χ) + n/a(n/a) + oe = 1.2 χ 0.6 (χ) + n/a(n/a) + oe = 0.6 χ
Accum. incr ./ incr true X 1.4X 1.5X 1.4 (X) + 1.4 (X) + oe = 4.1 X 0.3 (X) + 0.3 (X) + oe = 1.6X
Accum. decr ./ decr true X 1.5X 1.5X 1.3 (X) + 1.3 (X) + oe = 3.9 X 0.3 (X) + 0.4 (X) + oe = 1.6X
Accum. decr ./ decr s1.x > 1 X 1.5X 2.6X 1.3 (X) + 1.4 (X) + oe = 4 X 0.3 (X) + 0.6 (X) + oe = 1.9X
Accum. isz ./ isz true X 1.4X 4.3X 1.4 (X) + 1.3 (X) + oe = 4 X 1.8 (X) + 0.7 (X) + oe = 3.4X
Counter decr ./ decr true χ 1.9 χ 1.5 χ 1.4 (X) + 1.4 (X) + oe = 4.2X7 1.2 (χ) + n/a(n/a) + oe = 1.2 χ
Counter decr ./ decr s1.x >= 2 X 1.5X 13.0X 1.3 (X) + 1.4 (X) + oe = 4.1 X 2.0 (X) + 2.4 (X) + oe = 5.9X
Counter decr ./ incr true χ 1.6 χ 0.3 χ 1.4 (χ) + n/a(n/a) + oe = 1.4 χ 0.3 (χ) + n/a(n/a) + oe = 0.3 χ
Counter decr ./ incr s1.x >= 1 X 1.6X 6.8X 1.4 (X) + 1.4 (X) + oe = 4.2 X 1.5 (X) + 1.0 (X) + oe = 3.8X
Counter incr ./ isz true χ 1.5 χ 0.8 χ 1.2 (χ) + n/a(n/a) + oe = 1.2 χ 0.7 (χ) + n/a(n/a) + oe = 0.7 χ
Counter incr ./ isz s1.x > 0 X 1.5X 5.3X 1.3 (X) + 1.4 (X) + oe = 4.1 X 0.6 (X) + 0.5 (X) + oe = 2.6X
Counter incr ./ isz s1.x > 0 χ 1.5 ? TO ? 1.4 (X) + 1.5 (?) + oe = 4.4 χ 1.1 (X) + 2.3 (X) + oe = 6.9 χ
Counter incr ./ clear true χ 1.3 χ 0.4 χ 1.3 (X) + 1.2 (χ) + oe = 2.5 χ 0.2 (X) + 0.2 (χ) + oe = 0.4 χ

Extended version of Fig. 3. Results of applying CITYPROVER to the simple benchmarks. For each benchmark, we report the
time to use both REDUCEnm and DAREDUCEnm, using either CPAchecker [26] or Ultimate [20] to solve the reachability tasks.
Note that s1.x is the object field, and x1, y1 are m,n parameters, resp.



D. Detailed version of Figure 4
ADT Methods REDUCEnm DAREDUCEnm mn-differencing

m(x1), n(y1) ϕ
n(y1)
m(x1) Exp. Ult Ult

SimpleSet n/a n/a X n/a AB(Iβ): ult - 16.9, cpa - 1.2 X
SimpleSet isin ./ isin true X 137.8 X 13.6 (X) + 6.3 (X) + oe = 36.7 X
SimpleSet isin ./ add x1 6= y1 X 84.8 X 11.4 (X) + 8.9 (X) + oe = 37.1 X
SimpleSet isin ./ add true χ 2.4 χ 1.5 (χ) + n/a(n/a) + oe = 1.5 χ
SimpleSet isin ./ clear true χ 2.6 χ 1.6 (χ) + n/a(n/a) + oe = 1.6 χ
SimpleSet isin ./ clear x1 6= y1 χ 2.4 χ 1.6 (χ) + n/a(n/a) + oe = 1.6 χ
SimpleSet isin ./ clear a1 6= x1 ∧ s1.b 6= y1 χ 3.1 χ 1.4 (χ) + n/a(n/a) + oe = 1.4 χ
SimpleSet isin ./ clear a1 6= x1 ∧ s1.b 6= x1 X 14.0 X 0.9 (X) + 1.5 (X) + oe = 19.3 X
SimpleSet isin ./ getsize true X 41.3 X 3.4 (X) + 4.1 (X) + oe = 24.2 X
ArrayStack n/a n/a X n/a AB(Iβ): ult - 35.4, cpa - 66.6 X
ArrayStack push ./ pop a1[top1] = x1∧top1 > 1∧top1 <

5− 1
X MO – 34.6 (X) + 25.5 (X) + oe = 95.5 X

ArrayStack push ./ pop true χ 2.2 χ 2.0 (χ) + n/a(n/a) + oe = 2.0 χ
ArrayStack push ./ push true χ 7.6 χ 17.0 (χ) + n/a(n/a) + oe = 17.0 χ
ArrayStack push ./ push top1 < 3 χ 3.9 χ 229.3 (X) + 1.4 (χ) + oe = 230.7 χ
ArrayStack push ./ push x1 = y1 χ 19.8 χ 17.3 (χ) + n/a(n/a) + oe = 17.3 χ
ArrayStack push ./ push x1 = y1 ∧ top1 < 3 X MO – 3.6 (X) + 116.3 (X) + oe = 155.1 X
ArrayStack pop ./ pop top1 = −1 X TO – 0.7 (X) + 2.0 (X) + oe = 38.0 X
ArrayStack pop ./ pop true χ 2.1 χ 1.4 (χ) + n/a(n/a) + oe = 1.4 χ

Queue n/a n/a X n/a AB(Iβ): ult - 132.9, cpa - 109.1 X
Queue enq ./ enq true χ 39.8 χ 35.0 (χ) + n/a(n/a) + oe = 35.0 χ
Queue deq ./ deq true χ 3.5 χ 3.1 (χ) + n/a(n/a) + oe = 3.1 χ
Queue deq ./ deq size1 = 0 X TO – 2.2 (X) + 63.1 (X) + oe = 174.4 X
Queue enq ./ enq true χ 27.8 χ 23.3 (χ) + n/a(n/a) + oe = 23.3 χ
Queue enq ./ enq x1 = y1 χ 63.8 χ 22.6 (χ) + n/a(n/a) + oe = 22.6 χ
Queue isempty ./ isempty true X TO – 6.6 (X) + TO (?) + oe = TO –
Queue enq ./ deq size1 = 1 ∧ x1 = a1[front1] X TO – 2.3 (X) + 360.6 (X) + oe = 472.0 X
Queue enq ./ deq true χ MO – 8.4 (χ) + n/a(n/a) + oe = 8.4 χ
Queue enq ./ isempty size1 > 0 X MO – 6.1 (X) + TO (?) + oe = TO –
Queue enq ./ isempty true χ MO – 7.4 (χ) + n/a(n/a) + oe = 7.4 χ
Queue deq ./ isempty size1 = 0 X MO – 2.1 (X) + 0.8 (X) + oe = 135.8 X
HashTable n/a n/a X n/a AB(Iβ): ult - TO, cpa - 7.1 X
HashTable put ./ put 1ϕput

put χ 262.5 χ 97.5 (χ) + n/a(n/a) + oe = 97.5 χ

HashTable put ./ put 2ϕput
put χ 202.7 χ 136.9 (χ) + n/a(n/a) + oe = 136.9 χ

HashTable put ./ put 3ϕput
put X TO – TO (?) + n/a(n/a) + oe = TO –

Hashtable put ./ put 3ϕput
put X 566.5 X 1.5 (X) + 288.9 (X) + oe = 297.5 X

HashTable put ./ put true χ TO – 102.3 (χ) + n/a(n/a) + oe = 102.3 χ
HashTable get ./ get o1.keys = 0 X TO – TO (?) + n/a(n/a) + oe = TO –
HashTable get ./ get true X TO – TO (?) + n/a(n/a) + oe = TO –
HashTable get ./ get true X 50.0 X 2.0 (X) + 47.7 (X) + oe = 56.8 X
HashTable get ./ put x1 6= y1 X TO – TO (?) + n/a(n/a) + oe = TO –
HashTable get ./ put true χ 1.3 χ 0.9 (χ) + n/a(n/a) + oe = 0.9 χ

1ϕpop
push ≡ o1.a[o1.top] = x1 ∧ o1.top > 1 ∧ o1.top < MAX 1ϕput

put ≡ x1 6= y1
2ϕput

put ≡ x1 6= y1 ∧ o1.table[x1%CAP ].key = −1 ∧ o1.table[y1%CAP ].key = −1
3ϕput

put ≡ x1 6= y1 ∧ x1%CAP 6= y1%CAP ∧ o1.table[x1%CAP ].key = −1 ∧ o1.table[y1%CAP ].key = −1

Extended version of Fig. 4. Some commutativity conditions are listed below the table. Our implementation actually subdivides
Phase A into two parts: first one in which we prove return value agreement (i.e. Rα) and then one in which we prove that
Iβ is implied. Hence, in the DAREDUCEnm column, we report the some of these two sub-phases plus the time for Phase B.
For each benchmark, we re-ran the Phase B, even though all could have shared one run. For each ADT above, we report an
example of the time to prove AB(Iβ) with both Ultimate and CPAchecker. We mostly used Ultimate but, in some of the Queue
or Hashtable cases, it did not perform well and we instead tried CPAchecker. Those cases are denoted in blue.

Results. We show that CITYPROVER is tractable at proving commutativity conditions. Moreover, DAREDUCEnm improves
over REDUCEnm: in most cases it is faster, sometimes by as much as 2× or 3×. In 7 cases, DAREDUCEnm is able to generate
an answer, while REDUCEnm suffers from a timeout/memout. For Hashtable, Ultimate timed out on Phase B. We still used
Ultimate in some Phase A cases, because it can report a counterexample in Phase A (even if it timed out in B). We also could
use Ultimate for Phase A, given that CPAchecker already proved Phase B, with the same Iβ .



E. Benchmark Sources

Memory

struct state t { int x; };

#include <stdlib.h>

#define o new(res) res = (struct state t *)malloc(sizeof(struct state t ))

#define o clone(src) { \
struct state t* tmp; \
o new(tmp); \
tmp−>x = (src)−>x; \
dst = tmp; \
}

#define o read(st,rv) rv = (st)−>x
#define o write(st,rv ,v) { (st)−>x = v; rv = 0; }

Counter

struct state t { int x; };

#include <stdlib.h>

#define o new(res) res = (struct state t *)malloc(sizeof(struct state t ))
#define o close(src) { \

struct state t* tmp; \
o new(tmp); \
tmp−>x = src−>x; \
dst = tmp; \
}

#define o incr(st , rv) { (st)−>x += 1; rv = 0; }
#define o clear(st,rv) { (st)−>x = 0; rv = 0; }
#define o decr(st,rv) { if (( st)−>x == 0) rv = −1; else { (st)−>x −= 1; rv = 0; } }
#define o isz(st,rv) { rv = (( st)−>x == 0 ? 1 : 0); }

Accumulator

struct state t { int x; };

#include <stdlib.h>

#define o new(res) res = (struct state t *)malloc(sizeof(struct state t ))
#define o close(src) { \

struct state t* tmp; \
o new(tmp); \
tmp−>x = src−>x; \
dst = tmp; \
}

#define o incr(st , rv) { (st)−>x += 1; rv = 0; }
#define o decr(st,rv) { (st)−>x −= 1; rv = 0; }
#define o isz(st,rv) { rv = (( st)−>x == 0 ? 1 : 0); }

Array Queue

#define MAXQUEUE 5

struct state t { int a[MAXQUEUE]; int front; int rear; int size; };



#include <stdlib.h>

#define o new(res) { \
res = malloc(sizeof(struct state t )); \
res−>front = 0; \
res−>rear = MAXQUEUE−1; \
res−>size = 0; \
}

#define o enq(st,rv,v) { \
if (( st)−>size == MAXQUEUE) rv = 0; \
else { \

(st)−>size++; (st)−>rear = ((st)−>rear + 1) % MAXQUEUE; (st)−>a[(st)−>rear] = v; rv = 1; } }

#define o deq(st,rv) { \
if (( st)−>size==0) rv = −1; \
else { int r = (st)−>a[(st)−>front]; \

(st)−>front = (( st)−>front + 1) % MAXQUEUE; \
(st)−>size−−; \
rv = r ; } }

#define o isempty(st,rv) rv = ( (st)−>size==0 ? 1 : 0)

Stack

#define MAXSTACK 5

struct state t { int a[MAXSTACK]; int top; };

#define o new(res) res = (struct state t *)malloc(sizeof(struct state t )); res−>top = −1;

#define o push(st,rv,v) { \
if (( st)−>top == (MAXSTACK−1)) {rv = 0;} \
else { (st)−>top++; (st)−>a[(st)−>top] = v; rv = 1; } }

#define o pop(st,rv) { \
if (( st)−>top == −1) rv = −1; \
else rv = (st)−>a[ (st)−>top−− ]; }

#define o isempty(st,rv) rv = (( st)−>top==−1 ? 1 : 0)

Hash Table

#define HTCAPACITY 11
struct entry t { int key; int value; };
struct state t { struct entry t table [HTCAPACITY]; int keys; };

#include <stdlib.h>

#define o new(st) { s1 = malloc(sizeof(struct state t )); \
for ( int i=0;i<HTCAPACITY;i++) { s1−>table[i].key = −1; } \
s1−>keys = 0; }

#define o put(st,rv,k,v) { int slot = k % HTCAPACITY; \
if (( st)−>table[slot ]. key == −1) { \

(st)−>table[slot ]. key = k; \
(st)−>table[slot ]. value = v; \



(st)−>keys++; \
rv= 1; } \

else if (( st)−>table[slot ]. key == k) { \
(st)−>table[slot ]. value = v; \
rv = 1; } \

else if (( st)−>table[slot ]. key != k) { \
rv = −1; } \

else { rv = −1; } }

#define o get(st,rv,k) { int slot = k % HTCAPACITY; \
if (( st)−>table[slot ]. key != k) rv = −1; \
else rv = (st)−>table[slot ]. value; }

#define o rm(st,rv,k) { int slot = k % HTCAPACITY; \
if (( st)−>table[slot ]. key == k) { \

(st)−>table[slot ]. key = −1; rv = 1; } \
else { rv = −1; } }

#define o isempty(st,rv) { if (( st)−>keys==0) rv = 1; else rv = 0; }

Simple Set

struct state t { int a; int b; int sz; };

#include <assert.h>
#include <stdlib.h>

#define o new(st) { \
st = malloc(sizeof(struct state t )); \
st−>a = −1; st−>b = −1; st−>sz = 0; }

#define o add(st,rv,v) { \
if (( st)−>a == −1 && (st)−>b == −1) { (st)−>a = v; (st)−>b=(st)−>b+0; (st)−>sz++; rv = 0; } \
else if (( st)−>a != −1 && (st)−>b == −1) { (st)−>b = v; (st)−>a=(st)−>a+0; (st)−>sz++; rv = 0; } \
else if (( st)−>a == −1 && (st)−>b != −1) { (st)−>a = v; (st)−>b=(st)−>b+0; (st)−>sz++; rv = 0; } \
else { rv = 0; } }

#define o isin(st , rv ,v) { \
rv = 0; \
if (( st)−>a == v) rv = 1; \
if (( st)−>b == v) rv = 1; }

#define o getsize(st,rv) { rv = (st)−>sz; }

#define o clear(st,rv) { (st)−>a = −1; (st)−>b = −1; (st)−>sz = 0; rv = 0; }

#define o norm(st,rv) { \
if (( st)−>a > (st)−>b) { \

int t = (st)−>b; \
(st)−>b = (st)−>a; \
(st)−>a = t; \
} \
rv = 0; }


