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Abstract. We describe a novel use of abstract interpretation in which the abstract
domain informs a runtime system to correct synchronization failures. To this end,
we first introduce a novel synchronization paradigm, dubbed corrective synchro-
nization, that is a generalization of existing approaches to ensuring serializability.
Specifically, the correctness of multi-threaded execution need not be enforced
by previous methods that either reduce parallelism (pessimistic) or roll back il-
legal thread interleavings (optimistic); instead inadmissible states can be altered
into admissible ones. In this way, the effects of inadmissible interleavings can
be compensated for by modifying the program state as a transaction completes,
while accounting for the behavior of concurrent transactions. We have proved that
corrective synchronization is serializable and give conditions under which progress
is ensured. Next, we describe an abstract interpretation that is able to compute
these valid serializable post-states w.r.t. a transaction’s entry state by computing an
under-approximation of the serializable intermediate (or final) states as the fixpoint
solution over an inter-procedural control-flow graph. These abstract states inform
a runtime system that is able to perform state correction dynamically. We have
instantiated this setup to clients of a Java-like Concurrent Map data structure to
ensure safe composition of map operations. Finally, we report early encouraging
results that the approach competes with or out-performs previous pessimistic or
optimistic approaches.

1 Introduction

Concurrency control is a hard problem. While some thread interleavings are admissible
(if they involve disjoint memory accesses), there are certain interleaving scenarios that
must be inhibited to ensure serializability. The goal is to automatically detect, with high
precision and low overhead, the inadmissible interleavings, and avoid them.

Toward this end, there are currently two main synchronization paradigms:
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– Pessimistic synchronization: In this approach, illegal interleaving scenarios are
avoided conservatively by blocking the execution of one or more of the concurrent
threads until the threat of incorrect executions has gone away. Locks, mutexes,
semaphores, and some transactional memory (TM) implementations [11,19] are all
examples of how to enforce mutual exclusion, or pessimistic synchronization.

– Optimistic synchronization: As an alternative to pro-active (pessimistic) synchroniza-
tion, optimistic synchronization is essentially a reactive approach. The concurrency
control system monitors execution, such that when an illegal interleaving scenario
arises, it is detected as such and abort-like remediation steps are taken. Many TM im-
plementations operate this way [13], logging memory accesses, aborting transactions,
and reversing the effects.

The pessimistic approach is useful if critical sections are short, there is little available
concurrency, and the involved memory locations are well known [14]. Optimistic syn-
chronization is most effective when there is a high level of available concurrency. An
example is graph algorithms, such as Boruvka, over graphs that are sparse and irregular
[17]. In both of these cases, however, the concurrency paradigm is designed to exploit
domain-specific windows of opportunity where there is a low amount of conflict. These
are, in a sense, low-hanging fruit, and there are many other situations of practical interest
where there is unavoidable contention. (We will give a simple example in the next
section.) Neither of these existing approaches offer a way to tackle contention head-on.

Corrective Synchronization. In this paper, we take a first step in formulating and
exploring a novel synchronization paradigm that generalizes both the pessimistic and
optimistic approaches. In our approach, dubbed corrective synchronization, conflicting
transactions may begin to execute concurrently (unlike pessimism), yet when conflict
occurs, the remediation is not simply to abort (unlike optimism). Instead, a thread
resolves contention by dynamically altering the inadmissible state into an acceptable
one, accounting for the behavior of concurrent threads, so as to guarantee serializability.

This paper. Corrective synchronization, as a concept, opens up a vast space of pos-
sibilities for concrete synchronization protocols. In this paper, we take a first step in
exploring this space with a formalism, proof of serializability, and a novel use of abstract
interpretation and dynamic instrumentation. The key idea can be illustrated with our
corr t proof rule:

Γ, (t, s) ` s→∗ (T, µ′, σ, L)
Γ, (t, s) ` (T, µ, σ, L)→ (T, µ[t 7→ µ′(t)], σ, L)

corr t

As is typical, we model transactions as a transition system where a state configuration s
consists of tuples (T, µ, σ, L). Here T is a set of transaction identifiers, µ is a mapping
from transaction id to a thread-local replica of the state, σ is the shared state and,
following [16], we use a shared log of events L to track the effects of committed
transactions. For our purposes, we include a context Γ which maps each transaction id t
to the configuration just before the corresponding transaction began.

The key idea here is thread-local correction, whereby a single thread t can apply a
correction by jumping from µ to µ[t 7→ µ′(t)]. Thread t is permitted to do so, provided
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that there was an alternate execution path s →∗ (T, µ′, σ, L) from the configuration
s in which t began to some other (T, µ′, σ, L). After a correction, the thread may be
able to perform a commit, which (logically) involves replaying the mutation on the
shared state. This rule is fairly simple yet has significant consequences and, to the best
of our knowledge, nothing like this exists in the literature. One can think of pessimistic
synchronization as an almost trivial restriction in which conflicting executions never
occur and this rule is never needed. Meanwhile, optimistic synchronization permits only
corrections back to thread t’s initial configuration. For the purposes of this paper, the
alternate path to µ′ must be under the same set of concurrent transactions T , though
this restriction can be relaxed, which we leave for future work. We have proved that our
definition of corrective synchronization is serializable (Section 3) and provide conditions
under which progress is guaranteed.
Challenges & Contributions. With definitions and serializability established, we
move on to two key challenges that pertain to realizing corrective synchronization:

– How do we compute each thread’s alternative (serializable) post-states?
– Given an incorrect state, how do we efficiently recover to a correct post-state?

For the sake of concreteness, we focus on concurrent Java-like programs whose shared
state is encoded as one or more ConcurrentMap instances. We tackle the above chal-
lenges via a novel use of abstract interpretation, equipped with a specialized abstraction
for maps, to derive the correct post-states, or “targets”, in relation to a given pre-state.
Our abstract interpretation computes an under-approximation of the serializable inter-
mediate (or final) states as the fixpoint solution over an inter-procedural control-flow
graph. We prove that the computed target states are progress-safe, i.e. the system is not
in a stuck state after a correction. We then show how these target states can be used by a
runtime system to dynamically correct an execution and jump to a target state.

In summary, this paper makes the following principal contributions. (1) We present
an alternative to both the pessimistic and optimistic synchronization paradigms, dubbed
corrective synchronization, whereby serializability is achieved neither via mutual exclu-
sion nor via rollbacks, but through correction of the post-state according to a relational
pre-/post-states specification. (2) We provide a formal description of corrective synchro-
nization. This includes soundness and progress proofs as well as a clear statement of
limitations. (3) We have developed an abstract interpretation to derive the prestate/post-
states specification for programs that encode the shared state as one or more concurrent
maps. (4) We have developed a runtime system that is able to use pre/post-state spec-
ifications to correct behaviors dynamically. (5) We report encouraging preliminary
experimental results on a prototype implementation.

2 Technical Overview

We now walk the reader through a high-level overview of corrective synchronization
with an example. We describe the conceptual details at a technical level, and then the
two main algorithmic steps.
Running Example. As an illustrative example, we refer to the code fragment on
Figure 1, where a shared Map object, (pointed-to by) map, is manipulated by method up-
dateReservation.
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1 Res updateReservation(Slot oslot, Slot nslot ) {
2 Res r = map.remove(oslot);
3 if ( r == null)
4 r = new Res();
5 Res dead = map.replace(nslot, r);
6 return dead;
7 }

Fig. 1: Example that updates reservation for customers,
moving an entry from one date/time slot to another.

Let us assume that different
threads invoking this method
are all attempting to simul-
taneously move reservations
into the same nslot. Doing so
optimistically would lead to
multiple rollbacks (even un-
der boosted conflict detection
[12], since the operations due
to different threads do not com-
mute), and thus poor perfor-
mance. Pessimistic mutual ex-
clusion, on the other hand, would block all but one thread until the operation completes,
which is far from optimal if new Res() is an expensive operation.

Conceptual Approach. By corrective synchronization we mean the ability to trans-
form a concurrent run that, in its present condition, may not be serializable into a run
that is serializable. Stated formally, corrective synchronization is a relationship h ∼ h′
between histories, such that (i) h and h′ share the same initial state, and (ii) h and h′

share the same log of committed operations (i.e., they agree on the operations on the
shared-state). One can think of h′ as an alternate parallel reality to h.

The first condition ensures that corrective synchronization yields a feasible outcome.
The second is the requirement not to roll back updates to the shared state. These two
conditions distinguish corrective synchronization from existing solutions: Unlike pes-
simistic approaches, bad behaviors may occur under corrective synchronization. That
is, they are not avoided, but handled as they manifest. Unlike optimistic solutions, the
core handling mechanism is not to retry the transaction (or parts thereof), which implies
rolling back (either committed or uncommitted) updates to the shared log, but rather to
“warp” to another state. To illustrate our approach, consider the following history:

[ t1: remove(10 :00)/α→ t2: remove(13 :00)/null
↪→ t1: if(. . .) → t2: if(. . .) new Res()/δ
↪→ t2: replace(11 :00)/β
↪→ t1: replace(11 :00)/δ
↪→ t1: return δ → t2: return β ]

Each step in this history is labeled with the transaction identifier (t1 or t2) and the code
that the transaction is executing. With this history, 11:00 is associated with β in the final
state of the map. This history is clearly not serializable. t2 cannot return β when 11:00
is associated with β in the final state of the map. However, we can warp to a history that
is serializable by applying a correction. In this case, note that there are two possible
serializable histories: (i) t1 goes first and returns β, t2 goes second and returns α, and
in the final state 11 : 00 is mapped to δ; (ii) t2 goes first and returns β, t1 goes second
and returns δ, and in the final state 11:00 is mapped to α. For the sake of efficiency, we
can correct the above execution by chosing serial history (ii) as the target state and the
correction is quick and easy: update the map so that 11:00 is associated with α. Using
(i) as a target is also possible, but would have required a correction to the map as well
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t1

t2

remove if replace

remove new replace

pessimistic

t1

t2

remove if replace

remove new replace

optimistic

remove new replace retry

t1

t2

remove if replace corrective

remove new replace correct

Fig. 2: Interleaved execution of two instances of updateReservation using pessimistic,
optimistic, and corrective synchronization.

as the return values of t1 and t2. Note that the corrective actions above are of a general
form, which is not limited to two threads. For any number of threads, the corrected state
would have one privileged thread deciding the return value (i.e., the value of dead) for
all threads as well as what 11:00 should be associated with in the map. Also note that
the correction does not directly modify the shared state; rather, the correction is made to
a thread-local replica of the state. After the correction, if the thread is able to commit,
then shared-state mutations are applied at commit time.

How does this corrective approach compare to handling of the situation by pessimistic
or optimistic approaches? We illustrate the difference between corrective synchronization
and classic optimistic and pessimistic synchronization in Figure 2. We visually represent
concurrent execution of two instances of the updateReservation code using pessimistic
locks, optimistic TM and corrective synchronization (proceeding horizontally left-to-
right). Pessimism serializes execution, and so there is no performance gain whatsoever.
As for optimistic and corrective synchronization, we consider the interleaving scenario
specified above. Both optimistic and corrective synchronization, allowing the problematic
chain of interleavings, reach a nonserializable state. Optimism resolves this by retrying
the entire transaction executed by, say, thread t2. This yields serial execution, similar to
the pessimistic run, where t2 runs after t1. Corrective synchronization, instead, “fixes”
the final state, allowing t2 to complete without rerunning any or all of its code. Our
experiments suggest the corrective actions are — relatively speaking — inexpensive,
especially compared to the alternatives of either blocking or aborting/restarting all
threads but one.

We refer to corrective synchronization as sound if h′ is the prefix of a serializable
execution of the system. We refer to corrective synchronization as complete if for any
h, all the h′s that satisfy the conditions above are in the relation ∼. In the rest of this
paper, we describe our method of computing a sound yet incomplete set of corrective
targets via static analysis of the concurrent library. A solution that is not complete faces
the possibility of stuck runs: Given a (potentially) nonserializable execution prefix, the
system does not have a corresponding serializable prefix to transition to. In this paper,
we do not present a solution to the completeness problem, which we leave as future
work. In the meantime, there are two simple strategies to tackle this problem: (i) manual
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specification, whereby the user completes the set of corrective targets to ensure that
there are no stuck runs (in our implementation, the targets are computed offline via
static analysis, letting the user complete the specification ahead of deployment); and (ii)
complementary techniques, such as optimism, which the system can default to in the
absence of a corrective target.
Computing Corrective Targets. A simpler and more abstract specification to work
with, compared to complete execution prefixes, is triplets (s, s′, s′′) of states, such
that there exist prefixes h and h′ as above with respective initial and current states
(s, s′) and (s, s′′), respectively. This form of specification is advantageous, because the
corresponding runtime instrumentation is minimal compared to tracking traces. At the
same time, however, initial and current states are a strict abstraction of complete traces,
and so they do not point back to prefixes h and h′.

Mapping back from pairs of states to prefixes requires an oracle. In our work we
compute the oracle as a relational abstract interpretation solution over the program that
is sound yet incomplete. Specifically, an underapproximation of the serializable interme-
diate (or final) states is computed as the fixpoint solution over an interprocedural control-
flow graph (CFG) of the form: t1 → t?2...n → tn+1 → t′1 → t′?2...n → t′n+1 → . . ., where
t, t′, etc denote different transaction types (i.e., transactions executing different code),
and n is unbounded, simulating a nondeterministic loop. This representation simulates
an unbounded number of instances of transactions that are executed sequentially.

We go into detail about this representation in Section 5, but here note that (i) this
representation reflects the effects of serial execution of the transactions, and so the
corrective targets are guaranteed to be sound; (ii) the nondeterministic loop captures an
unbounded number of transactions; and (iii) the first and last transactions of a given type
are purposely disambiguated to boost the precision of static analysis over the simulated
execution. As an illustration of the third point, in our running example the first transaction
t1 is modeled precisely in inserting the key/value pair into the Map object. Analogously,
the last transaction tn+1 can be confirmed not to update the key/value mapping.
Runtime Synchronization. The runtime system has two main responsibilities. First,
it must track whether an execution has reached a (potentially) bad state. Second, if such
a state arises, then the runtime system must map the current state onto a state that shares
the same initial state and is known, by the oracle, to have a serializable continuation.
We address the first challenge via a coarse conflict-detection algorithm that tracks API-
level read/write behaviors (at the level of Map operations). If read/write or write/write
conflicts arise, then corrective synchronization is triggered in response. If the oracle was
not able to compute a target for the correction (e.g., because of a loss of precision of the
static analysis), then our approach can apply optimistic synchronization

We expand on the above challenges in Section 5, and provide encouraging experi-
mental results on a simple prototype in Section 6. Prior to that, in Section 4, we provide
a formal statement of corrective synchronization.

3 Semantics of Corrective Synchronization

We now introduce a generic transaction semantics for corrective synchronization. We
prove soundness (serializability), and give conditions under which progress is ensured.
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Notation. We use the following semantic domains:

c ∈ C := command t ∈ T ⊂ T := transaction IDs
σ ∈ Σ := shared state σt := local state of t
L ∈ L := shared log Lt := local log of t

s = (T, [t 7→ (ct, σt, Lt)]t∈T , σ, L) ∈ S := system state

Following [16], our semantics uses local logs to track local operations, and shared logs
to track committed operations. We assume that the set Σ of shared states is closed under
composition, denoted ·. That is, ∀σ, σ′ ∈ Σ. σ · σ′ ∈ Σ. Hence, we can decompose
a given shared state into (disjoint) substates (the standard decomposition being into
memory locations), such that we can easily refer to the read/write effects of a given
operation. For that, we additionally define two helper functions, r, w : C × S ⇀ Σ,
such that r (resp. w) computes the portion of the shared state read (resp. written) by a
given atomic operation. The notation ⇀ denotes that w and r are partial functions. The
shared log L consists of pairs 〈t, o〉, where t is a transaction identifier, o is the operation
executed by t, and w(c) 6= ⊥.

Transition System. Execution of the transition system is represented by five events:

bgn t
t /∈ T

Γ ∪ (t, (T, µ, σ, L)) ` (T, µ, σ, L)→ (T ∪ {t}, µ · [t 7→ (c,⊥, ε)], σ, L)

local t
t ∈ T,CJct, σtK = (c′t, σ

′
t)

Γ ` (T, µ, σ, L)→ (T, µ[t 7→ (c′t, σ
′
t, Lt)], σ, L)

cmt t
t ∈ T, Lt 6= ε, serpref L · Lt

Γ ` (T, µ, σ, L)→ (T, µ[t 7→ (ct, σt, ε)], JLtK(σ), L · Lt)

end t
t ∈ T, µ(t) = (skip, , ε)

Γ ` (T, µ, σ, L)→ (T \ {t}, µ \ [t 7→ µ(t)], σ, L)

corr t
t ∈ T, s (T, µ′, σ, L)

Γ, (t, s) ` (T, µ, σ, L)→ (T, µ[t 7→ µ′(t)], σ, L)

The bgn event marks the beginning of a transaction. In this and all rules, we work with a
context Γ , consisting of pairs (t, s) that correlate transaction identifier t with the state
configuration s that immediately preceded t’s start, captured in the bgn event. During
its execution, a transaction modifies only its local state and local log Lt, as seen in
the local event rule. Here t’s corresponding local configuration is denoted (ct, σt, Lt)
and C represents the transition relation for local operations. The cmt event fires when
a transaction publishes its outstanding log of operations that affect the shared state
to the shared state and log. We use helper function serpref : L → {true, false} to
(conservatively) determine whether a given shared log is the prefix of some serializable
execution log. The end event marks the termination of a transaction.

Corrective action occurs in the corr event. This event enables a transaction to modify
its local state and log, under certain restrictions, as a means to recover from potentially
inadmissible thread interleavings. Note that the corr rule only applies changes to t’s



8

local configuration. All other transactions retain their original local configurations. The
intuition is that corr corrects the execution by jumping transaction t to a state that is
reachable starting from the entry state through a serialized execution.

Theorem 1 (Soundness). A terminating execution of the transition system yields a
serializable shared log (history).

Proof Sketch. The cmt event acts as a gatekeeper, demanding that the log prefix L · Lt
including the outstanding events about to be committed is serializable. The check executes
atomically together with the log update. Hence the system is guaranteed to terminate
with a serializable shared log.

Definition 1 (Progress). We say that the transition system has made progress, transi-
tioning from (global) state s to (global) state s′, if the associated event e for s e−→ s′ is
either a cmt event or an end event.

Definition 2 (Progress-safe corrective synchronization). Let corr t occur at system
state s = (T, µ, σ, L), such that state s′ = (T, µ[t 7→ (ct, σt, Lt)], σ, L) is reached.
Assume that there is a reduction (σt, ct, Lt)−→(σ′t, c

′
t, L
′
t), such that at system state

s′′ = (T, µ[t 7→ (σ′t, c
′
t, L
′
t)], σ, L) either (i) cmt t is enabled or (ii) end t is enabled.

Then we refer to corr t at s with target (σt, ct, Lt) as progress safe.

From the perspective of transaction t, the local states of other transactions are irrelevant
to whether a commit (or end) transition is enabled for t. The only cause of a failed commit
is if other threads have committed. We can therefore relax the definition above to refer
to any system state s′′ = (T ′, µ′, σ, L), such that t ∈ T ′ and [t 7→ (σ′t, c

′
t, L
′
t)] ∈ µ′.

Given transaction t with local state (σt, ct, Lt), we refer to target (σ′t, ct, L
′
t) as a

self-corrective target. After corrective synchronization, the transaction has the same
command left to reduce, but its state and outstanding log of operations are modified.
A specific instance is (σt, skip, Lt) → (σ′t, skip, L′t). This pattern of corrective syn-
chronization is progress safe if commits are attempted at join points, which enables
simulation of alternative control-flow paths (and therefore also logged effects) via cor-
rective synchronization.

Theorem 2 (Progress). If (i) a corr t event only fires when a transaction t reaches
a commit point but fails to commit, and (ii) corrective synchronization instances are
progress safe, then progress is guaranteed.

Proof Sketch. Given system state s, if there exists a transaction t that is able to either
commit or complete then the proof is done. Otherwise, there is a transaction t that
reaches a commit point at some state s′ and fails. At this point, corr t is the only
enabled transition for t, and by assumption (ii), the corrective synchronization instance
is progress safe. At this point, there are two possibilities. Either t proceeds without
other threads modifying the shared state, such that a commit or completion point is
reached by t (without corrective synchronization prior to reaching such a point according
to assumption (i)), in which case progress has been achieved, or one or more threads
interfere with t by committing their effects, in which case too progress has been achieved.
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Definition 3 (Complete corrective synchronization). We say that the system is com-
plete w.r.t. corrective synchronization if for any state s, if a corr t transition is executed
in s, then the selected corrective target satisfies progress safety.

Lemma 1 (Termination). Assume that the system performs corrective synchronization
only on failed commits, and is complete w.r.t. corrective synchronization. Then for any
run of the system where finitely many transactions are created, each having only finite
serial execution traces, termination is guaranteed.

Proof Sketch. The first two assumptions guarantee progress, as established above in
Theorem 2. Since transactions are finite, each transaction may perform finitely many cmt
transitions before terminating via an end transition. This implies that after finitely many
transitions, some transaction t will terminate. This argument applies to the resulting
system until no transactions are left.

4 Thread Local Semantics

We now instantiate the theoretical framework introduced in Section 3 to a language sup-
porting some standard operations on concurrent shared maps. We define the thread-local
concrete semantics of this language instantiating C of the local rule. Following stan-
dard abstract interpretation theory, we then introduce an abstract domain and semantics
that computes an approximation of the concrete semantics. This thread-local abstract
semantics will be used in Section 5 to compute progress-safe corrective “targets”.

Language. We focus our formalization on the following language fragment:

s ::= m.put(k, v)| v = m.get(k)| m.remove(k)| v = null

| v = m.putIfAbsent(k, v)| v = new Value()| assert(b)
b ::= x == null | x! = null| m.containsK(k) | !m.containsK(k)

The above fragment captures some representative operations from the Java 7 class
java.util.concurrent.ConcurrentMap.5 We represent by m the map shared among
all the transactions, and k a shared key. The values inserted or read from the map might
be a parameter of the transaction, or created through a new statement. Following the
Java library semantics, our language supports (i) v = m.get(k) that returns the value v
related with key k, or null if k is not in the map, (ii) m.remove(k) removes k from the
map, (iii) v = m.putIfAbsent(k, v) relates k to v in m if k is already in m and returns
the previous value it was related to, (iv) v = new Value(...) creates a new value, and
(v) v = null assigns null to variable v. In addition, our language supports a standard
assert(b) statement that lets the execution continue iff the given Boolean condition
holds. In particular, the language supports checking whether a variable is null, and if
the map contains a key. This is necessary to support conditional and loop statements.

Concrete Domain and Semantics. We begin by instantiating the state of a transac-
tion t to the language above. Let Var and Ref be the sets of variables and references,

5 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ConcurrentMap.html

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html
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CJm.put(k, v), (e,m)K = (e,m[e(k) 7→ e(v)])
CJv = m.get(k), (e,m)K = (e[v 7→ m(e(k))],m)
CJm.remove(k), (e,m)K = (e,m[e(k) 7→ null])
CJv = m.putIfAbsent(k, v), (e,m)K = (e[v 7→ m(n)],m′) :

m′ =

{
m[n 7→ e(v)]) if m(e(k)) = null

m otherwise
CJv = new Value(), (e,m)K = (e[v 7→ fresh(t)],m)
CJv = null, (e,m)K = (e[v 7→ {null}],m)
CJassert(x == null), (e,m)K = (e,m) if e(x) = null

CJassert(x! = null), (e,m)K = (e,m) if e(x) 6= null

CJassert(m.containsK(k)), (e,m)K
= (e,m) if m(e(k)) 6= null

CJassert(!m.containsK(k)), (e,m)K
= (e,m) if m(e(k)) = null

Fig. 3: Concrete semantics

respectively. Keys and values are identified by concrete references, and we assume null
is in Ref. We define by Env : Var → Ref the environments relating local variables to
references. A map is then represented as a function Map : Ref → Ref, relating keys
to values. The value null represents that the related key is not in the map. A single
concrete state is a pair made by an environment and a map. Formally, Σ = Env ×Map.
As usual in abstract interpretation, we collect a set of states per program point. Therefore,
our concrete domain is made by elements in ℘(Σ), and the lattice relies on standard set
operators. Formally, 〈℘(Σ),⊆,∪〉.The concrete semantics are given to the right. Figure
3 defines the concrete semantics. For the most part, it formalizes the API specification
of the corresponding Java method. Note that assert is defined only on the states that
satisfy the given Boolean conditions. n represents a fresh concrete node in the semantics
of putIfAbsent. In this way, the concrete semantics filters out only the states that might
execute a branch of an if or while statement.

Abstract Domain. Let HeapNode be the set of abstract heap nodes with null ∈
HeapNode. Both keys and values are abstracted as heap nodes. As usual with heap
abstractions, each heap node might represent one or many concrete references. There-
fore, we suppose that a function isSummary : HeapNode → {true, false} is provided;
isSummary(n) returns true if n might represent many concrete nodes (that is, it is a sum-
mary node). We define by Env : Var→ ℘(HeapNode) the set of (abstract) environments
relating each variable to the set of heap nodes it might point to. A map is represented as a
function Map : HeapNode→ ℘(HeapNode), connecting each key to the set of possible
values it might be related to in the map. The value null represents that the key is not
in the map. For instance, [n1 7→ {null, n2}] represents that the key n1 might not be in
the map, or it is in the map, and it is related to value n2. An abstract state is a pair made
by an abstract environment and an abstract map. We augment this set with a special
bottom value ⊥ to will be used to represent that a statement is unreachable. Formally,
Σ = (Env×Map)∪ {⊥}. The lattice structure is obtained by the point-wise application
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of set operators to elements in the codomain of abstract environments and functions.
Therefore, the abstract lattice is defined as 〈Σ, ⊆̇, ∪̇〉, where ⊆̇ and∪̇ represents the
point-wise application of set operators ⊆ and ∪, respectively.
Running example. Abstract state ([name 7→ {n1}], [n1 7→ {null}]) represents that key
name is not in the map, while ([name 7→ {n1}], [n1 7→ {n2}]) represents that it is in the
map, and it is related to some value n2. Finally, ([name 7→ {n1}], [n1 7→ {null, n2}])
represents that name (i) might not be in the map, or (ii) is in the map related to value n2.

Concretization function. We define the concretization function γΣ : Σ→ ℘(Σ) that,
given an abstract state, returns the set of concrete states it represents. First of all, we
assume that a function concretizing abstract heap nodes to concrete references is given.
Formally, γRef : HeapNode → ℘(Ref). We assume that this concretization function
concretizes null into itself (γRef(null) = {null}), and that it is coherent w.r.t. the
information provided by isSummary (¬isSummary(n)⇔ |γRef(n)| = 1).

The concretization of abstract environments relates each variable in the environment
to a reference concretized from the node it is in relation with. Similarly, the concretization
of abstract maps relates a reference concretized from a heap node representing a key
with a reference concretized from a node representing a value. Finally, the concretization
of abstract states applies point-wisely the concretization of environments and maps,
formalized as:

γEnv(e) = {λx.r : x ∈ dom(e) ∧ ∃n ∈ e(x) : r ∈ γRef(n)} γΣ(⊥) = ∅
γMap(m) = {λr1.r2 : ∃n1 ∈ dom(m) : r1 ∈ γRef(n1) ∧ ∃n2 ∈ m(n1) : r2 ∈ γRef(n2)}
γΣ(e,m) = {(e′,m′) : e′ ∈ γEnv(e) ∧m′ ∈ γMap(m)}

Lemma 2 (Soundness of the domain). The abstract domain is a sound approximation
of the concrete domain, that is, they form a Galois connection [3]. Formally, 〈℘(Σ),⊆
,∪〉 −−−→←−−−αΣ

γΣ 〈Σ, ⊆̇, ∪̇〉 where αΣ = λX. ∩ {Y : Y ⊆ γΣ(X)}.

Proof Sketch. γΣ is a complete meet-morphism since it produces all possible environ-
ments and maps starting from a given reference concretization. Then, αΣ is well-defined
since γΣ is a complete ∩-morphism. The fact that it forms a Galois connection follows
immediately from the definition of αΣ (Proposition 7 of [4]).

Running example. Consider again abstract state σ = ([name 7→ {n1}], [n1 7→ {null, n2}]).
Suppose γRef concretizes n1 and n2 into {#1} and {#2}, respectively. Then σ is con-
cretized into states ([name 7→ #1], [#1 7→ null]) representing that name is not in the
map and ([name 7→ #1], [#1 7→ #2]) representing that name is in the map is related to
the value pointed-to by reference #2.

Abstract Semantics. Figure 4 is the abstract semantics of statements and Boolean
conditions, that, given an abstract state and a statement or Boolean condition of the
language introduced above, returns the abstract state resulting from the evaluation of the
given statement on the given abstract state. As usual in abstract interpretation-based static
analysis [3], this operational abstract semantics is the basis for computing a fixpoint over
a CFG representing loops and conditional statements. We focus the formalization on
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SJv = new Value(), (e,m)K = (e[v 7→ fresh(t)],m) (new)
SJv = null, (e,m)K = (e[v 7→ {null}],m) (nlas)
SJv = m.get(k), (e,m)K = (e[v 7→

⋃
n∈e(k)m(n)],m) (get)

SJm.put(k, v), (e,m)K (put)

=

{
(e,m[n 7→ e(v)]) if e(k) = {n} ∧ ¬isSummary(n)
(e,m[n 7→ m(n) ∪ e(v) : n ∈ e(k)]) otherwise

SJm.remove(k), (e,m)K (rmv)

=

{
(e,m[n 7→ {null}]) if e(k) = {n} ∧ ¬isSummary(n)
(e,m[n 7→ m(n) ∪ {null} : n ∈ e(k)]) otherwise

SJv = m.putIfAbsent(k, v), (e,m)K (pIA)
= (π1(SJv = m.get(k), (e,m)K),m′) :

m′ =


m[n 7→ e(v)] if e(k) = {n} ∧m(n) = {null}
m[n 7→ m(n) ∪ e(v) : n ∈ e(k)] if null ∈ m(n) ∧ |m(n)| > 1
m otherwise

SJassert(x == null), (e,m)K (null)

=

{
(e[x 7→ {null}],m) if null ∈ e(x)
⊥ otherwise

SJassert(x! = null), (e,m)K (!null)

=

{
(e[x 7→ e(x) \ {null}],m) if ∃n ∈ HeapNode : n 6= null ∧ n ∈ e(x)
⊥ otherwise

SJassert(m.containsK(k)), (e,m)K (cntK)

=


⊥ if ∀n ∈ e(k) : m(n) = {null}
(e,m[n 7→ m(n) \ {null}]) if e(k) = {n} ∧ ¬isSummary(n) ∧m(n) 6= {null}
(e,m) otherwise

SJassert(!m.containsK(k)), (e,m)K (!cntK)

=


⊥ if ∀n ∈ e(k) : null /∈ m(n)
(e,m[n 7→ {null}) if e(k) = {n} ∧ ¬isSummary(n) ∧ null ∈ m(n)
(e,m) otherwise

Fig. 4: Formal definition of the abstract semantics.

abstract states in Env×Map, since in case of ⊥ the abstract semantics always returns ⊥
itself.

(new) creates a new heap node through fresh(t) (where t is the identifier of the
transaction performing the creation), and assigns it to v. The number of nodes is kept
bounded by parameterizing the analysis with an upper bound i such that (i) the first
i nodes created by a transaction are all concrete nodes, and (ii) all the other nodes
are represented by a summary node. Instead, (nlas) relates the given variable to the
singleton {null}. (get) relates the assigned variable v to all the heap nodes of values
that might be related with k in the map. Note that if k is not in the map, then the abstract
map m relates it to a null node, and therefore this value is propagated to v then calling
get, representing the concrete semantics of this statement. (put) relates k to v in the
map. In particular, if k points to a unique non-summary node, it performs a so-called
strong update, overwriting previous values related with k. Otherwise, it performs a weak
update by adding to the previous values the new ones. Similarly to (put), (rmv) removes



13

k from the map (by relating it to the singleton {null}) iff k points to a unique concrete
node. Otherwise, it conservatively adds the heap node null to the heap nodes related
to all the values pointed by k. (pIA) updates the map like (put) but only if the updated
key node might have been absent, that is, when null ∈ m(n). The abstract semantics
on Boolean conditions produces ⊥ statements if the given Boolean condition cannot
hold on the given abstract semantics. Therefore, (null) returns ⊥ if the given variable
x cannot be null, or a state relating x to the singleton {null} otherwise. Vice-versa,
(!null) returns ⊥ if x can be only null, or a state relating x to all its previous values
except null otherwise. Similarly, (cntK) returns ⊥ if the given key k is surely not in
the map, it refines the possible values of k if it is represented by a concrete node, or it
simply returns the entry state otherwise. Vice-versa, (!cntK) returns ⊥ if k is surely in
the map.

Lemma 3 (Soundness of the semantics). The abstract semantics is a sound approx-
imation of the concrete semantics. Formally, ∀st, (e,m) ∈ Σ : γΣ(SJst, (e,m)K) ⊇
CJst, γΣ(e,m)K, where C represents the pointwise application of the concrete semantics
to a set of concrete states.

Proof Sketch. Follows from case splitting on the statement, and by definition of the
concrete and abstract semantics.

Running example. Consider again the code of method getConvertor, and suppose that
the Boolean flag create is true. When we start from the abstract state ([name 7→
{n1}], [n1 7→ {null}]) (representing that name is not in the map), we obtain the
abstract state σ = ([name 7→ {n1}, conv 7→ {null}], [n1 7→ {null}]) after the
first statement by rule (get). Then the semantics of the Boolean condition of the if

statements at line 3 applies rule (null) (that does not modify the abstract state) since
conv is null, and we assumed create is true. Lines 4 and 5 applies rules (new)
and (pIA), respectively. Supposing that fresh(t) returns n2, we obtain σ′ = ([name 7→
{n1}, conv 7→ {n2}], [n1 7→ n2]). We then join this state with the one obtained by
applying rule (!null) to σ (that is, ⊥) obtaining σ′ itself. The result of this example
represents that, when you start the computation passing a key name that is not in the
map and true for the Boolean flag create, after executing method getConvertor in
isolation you obtain a map relating name to the new object instantiated at line 4.

5 Inferring Corrective Targets

We now apply the abstract semantics S to infer corrective targets. For this paper, we
support a restricted transactional model. In particular, we assume that there are n trans-
actions that start the execution together, each transaction commits only once, and all the
transactions commit together at the end of the execution. With these assumptions, we
can define a system that perform a global corrective synchronization at the end of the
execution. We leave more expressive inference for future work.
Serialized CFG. We apply the abstract semantics defined in Section 4 to compute
suitable corrective targets. In particular, we need that these targets are reachable from
the same entry state through a serializable execution. Therefore, we build a CFG that
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represents certain specific serialized executions. In particular, we assume that we have
k distinct types of transactions, and we build up a serialized CFG that represents a
serialized execution of at least 2 instances of each type of transaction.

Let {c1, ..., ck} be the code of k different transactions. For each transaction type i,
we create three static transaction identifiers ti1, ti2, and tin. ti1 and ti2 represent precisely
two concrete instances of ci, while tin is a summary abstract instance representing many
concrete instances of ci. We then build a CFG representing a serialized execution of all
these abstract transactions. In particular, each transaction type ci leads to a CFG tci that
executes (i) first ti1, (ii) then tin inside a non-deterministic loop (to over-approximate
many instances of ci)), and (iii) finally ti2. While the choice of having the two concrete
transaction instances before and after the summary instance is arbitrary and other solu-
tions are possible, we found this solution particularly effective in practice as we will
show in Section 6. The overall serialized CFG tc is then built by concatenating the CFGs
of all these transactions.

Let T # be the set of abstract transactions, that is T # = {tij : i ∈ [1..k], j ∈
{1, 2, n}}. Then our semantics on a serialized CFG returns a function in Φ : T # → Σ.
Running example. Similarly to other synchronization approaches, such as transactional
boosting [11] and foresight [7], applying corrective synchronization at the data-structure
level requires a commutativity specification. In the case of concurrent maps, a simple
and effective specification is in terms of the accessed key. Hence, for the getConvertor
code, we build a serialized CFG where all the transactions share the same key name (to
induce potential conflicts). For the sake of presentation, we set create to true. The
serialized CFG consists of the sequence of transactions t1; t?n; t2, where t?n represents
that the code of tn is inside a loop.

Suppose now we analyze this serialized CFG starting from the abstract state ([name 7→
{n1}], [n1 7→ {null}]). The abstract semantics computes the following abstract post-
state: ([name 7→ {n1}, conv1 7→ {n11}, convn 7→ {n11}, conv2 7→ {n11}], [n1 7→
{n11}]) (where nab represents the a-th node instantiated by transaction tb, and convc
represents the local variable conv of transaction tc). Intuitively, this result means that, if
we run a sequence of transactions executing the code of method getConvertor with a
map that does not contain key name, then at the end of the execution of all transactions
we will obtain a map relating name to the value generated by the first transactions, and
all the transactions will return this value.

Extracting Possible Corrective Targets. First notice that, given a transaction t, the
corr rule of the transition system introduced in Section 3 requires that the state the system
corrects to is reachable starting from the state at the beginning of the execution of t
(retrieved by Γ (t) = s [n.b. abuse of notation]) producing the same shared log (formally,
s  (T, µ′, σ, L)). Since in our specific instance of the transition system we suppose
that all the transactions start together, we assume that there is a unique entry state σ0
(formally, ∀t ∈ T : Γ (t) = σ0). In addition, since all the transactions commit together
at the end, we have complete control over the shared log, and when we correct the shared
log is always empty, and the shared state is identical to the initial shared state. Therefore,
given these restrictions, we only need to compute a µ′ such that Γ (t) (T, µ′, σ0, ε).

We compute possible corrective targets on the serialized CFG tc using the abstract
semantics S. In particular, we need to compute corrective targets that, given an entry
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state representing a precise observable entry state, are reachable through a serialized
execution. However, an abstract state in Σ might represent multiple concrete states. For
instance ([k 7→ {n1}], [n1 7→ {null, n2}]) represents both that k is (if n1 is related
to n2 in the abstract map) or is not (when n1 is related to null). This abstract state
therefore might concretize to states belonging, and it cannot be used to define a corrective
target. Therefore, we define a predicate single : Σ→ {true, false} that, given an abstract
state, holds iff it represents an exact concrete state. Formally,

single(e,m)⇔
∧{

∀x ∈ dom(e) : |e(x)| = 1 ∧ e(x) = {n1} ∧ ¬isSummary(n1)
∀n ∈ dom(m) : |m(n)| = 1 ∧m(n) = {n2} ∧ ¬isSummary(n2)

Note that in general the concretization of an abstract state is not computable. Therefore,
we rely on single to check if an abstract state represents one precise concrete state.

Lemma 4. ∀(e,m) ∈ Σ : single(e,m)⇒ |γΣ(e,m)| = 1

Proof Sketch (Proof Sketch). By definition of single, ¬isSummary(n) for all the nodes n
in e or n. By definition of isSummary we have that |γRef(n)| = 1. Thanks to this result,
combined with the definition of γΣ, we obtain that |γΣ(e,m)| = 1.

The definition of single is extended to states φ ∈ Φ by checking if single holds for
all the local states in φ. We build up a set of possible entry states S ⊆ Φ such that
∀φ ∈ S : single(φ), and we compute the exit states on the serialized CFG tc for all the
possible entry states, filtering out only the ones that represents an exact concrete state.
Note that since we have a finite number of abstract transactions, and each transaction has
a finite number of parameters, we can build up a finite set of entry states representing
all the possible concrete situations. Note that, while in general an abstract state rarely
represents a precise single concrete state, this is the case for most of the cases we dealt
with as shown by our experimental results. This happens since our static analysis targets
a specific data structure (maps), and tracks very precise symbolic information on it.

We then use the results of the abstract semantics S to build up a function corrTarg
that relates each entry state to a set of possible exit states: corrTarg(T,S) = [φ 7→ {φ′ :

φ′ ∈ SJtc, φK ∧ single(φ′)} : φ ∈ S].
Running example. Starting from the entry state ([name 7→ {n1}], [n1 7→ {null}]), the
exit state computed by the abstract semantics is ([name 7→ {n1}, conv1 7→ {n11}, convn 7→
{n11}, conv2 7→ {n11}], [n1 7→ {n11}]). This state satisfies the predicate single since it
represents a precise concrete state. Therefore, the relation between this entry and exit
state is part of corrTarg.
Dynamic Corrective Synchronization. In our model, when we start the execution
we have a finite number of concrete instances of each type of transaction. We denote
by T = {sij : j ∈ [0..m] ∧ i ∈ [1..kj ]} the set of identifiers of concrete transactions,
where m is the number of different types of transactions, kj is the number of instances
of transaction j, and sij represents the j-th instance of the i-th type of transaction.

We can then bind abstract transaction identifiers to concrete ones. Since the set of
abstract transactions is defined as T # = {tij : i ∈ [1..k], j ∈ {1, 2, n}}, we bind the
first two concrete identifiers to the corresponding abstract identifiers, and all the others to
the n abstract instance. We formally define the concretization of transaction identifiers as



16

follows: γT (T ) = [tij 7→ {si
′

j : (i ∈ {1, 2} ⇒ i′ = i) ∨ 3 ≤ i′ ≤ kj} : tij ∈ T ]. We can
now formalize the concretization of abstract states in Φ by relying on the concretization
of local states and transaction identifiers. γΦ(φ) = {t 7→ σ : ∃t′ ∈ dom(φ) : t ∈
γT (t) ∧ σ ∈ γΣ(φ(t))}.
We now prove that targets computed by corrTarg satisfy the premise of corr.

Theorem 3. Let t = corrTarg(T,S) be the results computed by our system. Then
∀σ0 ∈ γΦ(φ0), σn ∈ γΦ(φn) : φ0 ∈ dom(t) ∧ φn ∈ t(φ0) we have that σ0  σn.

Proof Sketch. By definition of corrTarg, we have that both single(φ0) and single(φn)
hold. Therefore, by Lemma 4 we have that γΣ(φ0) = {σ0} and γΣ(φn) = {σn}. In
addition, by definition of corrTarg we have that φn ∈ SJtc, φ0K. Then, by lemma 3
(soundness of the abstract semantics) we have that σn is exactly what is computed by
the concrete semantics on the given program starting from σ0, that is, σ0  σn.

Discussion. corrTarg returns a set of possible exit states given an entry state. This means
that, given a concrete incorrect post-state, we can choose the exit state produced by
corrTarg that requires a minimal correction to the incorrect post state. In this way, we
would minimize the runtime overhead of adjusting the concrete state. The target state
can be chosen by calculating the number of operations we need to apply to correct the
post-state, and select the one with the minimal number. This might be further optimized
by hashing the correct post states computed by corrTarg based on similarity. However,
we did not investigate this aspect since in our experiments the overhead of correcting
the post-state was already almost negligible by choosing a random target. We believe
that this is due to our specific setting, that is, concurrent maps. In fact, in this scenario
the corrective operations that we have to apply are to put or remove an element, and the
corrections always required very few of them. We believe that other data structures (e.g.,
involving ordering of elements like lists) might require more complicated corrections,
and we plan to investigate them as future work.

6 Preliminary Implementation

We now report encouraging results of our preliminary implementation. We have created
a Java implementation of our static analysis for composed Map operations (see Section
5). Given n types of transactions, our implementation builds a serialized CFG (Section
5) and then computes a fixpoint over it relying on the abstract semantics (Section 4). We
support all the operations listed in Section 4. Static analysis running times are negligible
compared to the rest of the process, and the analysis converges always in less than a
second. Therefore, we do not report the running times of the static analysis.

As explained earlier, the interface with the runtime system is a relational corrective
specification mapping pre-states to sets of post-states that are obtainable via serializable
execution of the transactions from the pre-state. As a partial example, [k 7→ ⊥, v 7→ v] 
{[k 7→ v, v 7→ v]} denotes that if we started from a pre-state where k was not in the map
and the value passed to the function was v, then in the post-state the key k is made to point
to the value v pointed-to by the second argument v in the pre-state. The runtime system
S is parameterized by the specification, which it loads at the beginning of the concurrent
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run. As discussed in Section 5, in our current prototype all transactions are assumed to
start simultaneously. This scenario is useful, for example, in loop parallelization. Each
concrete transaction is mapped to its abstract counterpart. The mapping process also
binds the concrete arguments of the transaction (i.e., the concrete object references) to
their symbolic counterparts (e.g., the k and v symbols above).

During execution, the runtime system monitors commit events. In our prototype, we
limit transactions to a single commit point before completion. Corrective synchronization
occurs on failed commits, in which case the transaction’s shared log, local state and
return value are all (potentially) modified according to the corrective specification.
Summary of Subjects and Experiments. We conducted experiments running our
implementation on four subjects, all of which are taken from popular open-source code
bases and have been used in past studies[24,25]. We considered workload size and
concurrency level, ranging from 2 to 23 threads, and summarizing over 10 runs. In each
case,we compared against (i) a pessimistic concrete-level variant of STM, as available via
version 1.3 of the Deuce STM (the latest version)6, and (ii) a lock-based synchronization
algorithm boosted with Map semantics [11], such that the locks are of the same grain as
their corresponding abstract locks in boosted STM. We ran our experiments on two Intel
Xeon 2.90GHz (16 cores) CPUs with 132GB of RAM.

Pessimistic Corrective
wload. conc. wload. conc.

Tomcat 1.5% 3% 29% 30%
dyuproject 18% 24% 30% 29%
Flexive 17% 14% 29% 30%
Gridkit 20% 16% 32% 31%
average 14% 14% 30% 30%

For lack of space, detailed experimental
results, considering factors such as number of
threads and size of the workload, are omitted.
The table on the right reports the relative gain
of STM and corrective synchronization w.r.t.
lock-based synchronization. We aggregate per-
formance results, averaging across all work-
loads and concurrency levels. These results
show that, on average, corrective synchroniza-
tion leads to a gain that is twice the one obtained by STM.

For completeness, we also note the absolute running times, as min/max intervals in
seconds, for the lock-based solution for the workload and concurrency configurations
respectively: Tomcat – [6,10], [7,12]; dyuproject – [6,9], [7,11]; Flexive – [6,10], [7,11];
and Gridkit – [6,9], [7,11]. The numbers are encouraging, indicating improvement
over both locks and STM. More careful engineering, beyond our current prototype
implementation, is likely to make the improvement more significant.

7 Related work

To our knowledge, existing solutions to the problem of correct synchronization assume
either the ability to prevent bad interleavings or the ability to roll back execution. We
focus our survey of related research on solutions for optimizing the rollback mechanism,
and also discuss works on synchronization synthesis backed by static program analysis
and on merging state mutations by concurrent threads.

There are two main optimizations to decrease rollback overhead: reducing either
abort rate or the extent to which a conflicted transaction rolls back. Different solutions

6 https://github.com/DeuceSTM/DeuceSTM

https://github.com/DeuceSTM/DeuceSTM
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have been proposed in each direction [11,18,27]. Others leverage available nondetermin-
ism [26]. None of these approaches perform corrective synchronization. A well-known
solution to restrict the extent to which a transaction rolls back is checkpointing [15,5] or
nested transactions [21,1]. Elastic transactions [6] avoid wasted work by splitting into
multiple pieces. The Push/Pull model [16] also uses local/shared logs, and is flexible
enough to express rollback-based transactions but nor corrective synchronization.

In our solution, static analysis is used to identify admissible shared-state configu-
rations to correct to from a given input state. Multiple past works on synchronization
synthesis have also relied on static analysis, albeit for the extraction of other types of
information. Golan-Gueta et al. [8] utilize static analysis to compute a conservative
approximation of the possible actions that a transaction may perform in its future from a
given intermediate point. This still pessimistic approach enables more granular synchro-
nization compared to the worst-case assumption that the transaction may perform any
action in its future. Autolocker [20] applies static analysis to determine a correct locking
policy. Hawkins et al. [9] ensure correct synchronization by construction. Prountzos et
al. [22] optimize the Galois system [18] via static shape analysis [23].

Finally, we note solutions based on merging, or combining, the effects of concurrent
threads. Burckhardt and Leijen propose concurrent revisions [2], inspirated by version
control systems. The idea is to specify a (custom) merge function, based on a revision
calculus, such that concurrent state mutations can be reconciled in a deterministic
manner. Somewhat similarly, Hendler et al. introduce flat combining [10]. The idea is
to synchronize concurrent accesses to a shared data structure D by having threads post
their updates to D into a common list as thead-local records, where a single thread at a
time acquires the lock on D, combines and applies the updates, and writes the results
back to the threads’ request fields. Contrary to these two paradigms, our approach builds
on thread-level state correction. This bypasses the need for a coarse-grained lock, as in
flat combining, and — unlike concurrent revisions — ensures serializability.

8 Conclusion and Future Work

We have presented an alternative to the lock- and retry-based synchronization methods
that we dub corrective synchronization. The key insight is to correct a bad execution,
rather than aborting/retrying the transaction or conservatively avoiding the bad execution
in the first place. We have explored an instantiation of corrective synchronization for com-
posed operations over ConcurrentMaps, where correct states are computed via abstract
interpretation. Experimental results with a prototype implementation are encouraging.

There are several directions for future work. First, one may explore other variants
of corrective synchronization. For example, one may want to allow multiple threads
to decide together corrective target states. One could also improve the abstract domain
beyond maps, perhaps using existing domains. Another direction is to integrate corrective
synchronization into larger-scale software systems and perform a deep experimental
evaluation over the spectrum of synchronization techniques. As part of such an effort,
one could develop compositional synchronization methods that integrate corrective
synchronization with lock- and STM-based synchronization.
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