
A Theory of Vertically Composable

Transactional Objects

Timos Antonopoulos, Paul Gazzillo, Eric Koskinen, and Zhong Shao

Yale University

Abstract. We introduce a methodology and formal model that captures
the essence of vertically composable transactional objects. Vertical com-
position adds complexity to transactional systems. As such, we aim to
unearth a clean semantic model that strikes a balance between antici-
pating future implementation methodologies yet, nonetheless, offering a
formal treatment of effective existing implementations. To this end we
adopt a layered approach and show that first-class treatment of compu-
tation reversibility leads to a natural form of vertical composition: a given
upper layer in a hierarchy can use inverses to roll back its operations and
a contention manager can ensure progress by, at any point, applying in-
verses on behalf of an executing transaction. The model’s expressiveness
is evident, for example, from the fact that we do not require that one
object layer use the same implementation strategy (e.g. pessimism versus
optimism) as another. Our main technical results are the first proofs of
contextual refinement (stronger than serializability) and vertical compo-
sition for transactional objects. Our underlying semantics gives rise to a
novel transactional variant of Herlihy’s Universal Construction.

Our model is a generalization of many known TM implementations, in-
cluding memory transactions, transactional boosting, some nested trans-
actions, etc. Yet the model also anticipates new strategies and leads to a
framework for constructing highly-concurrent systems in a modular way.
To this end, we describe how it could be used to implement a highly-
concurrent transactional file system out of linearizable base objects.

1 Introduction

The landmark linearizability paper of Herlihy and Wing [20] established the
idea of concurrent objects that can be viewed as atomic from the perspective
of threads accessing them. This has been enormously successful, leading to the-
ories [12,15,27,44,43,2,36] and implementations (e.g. java.util.Concurrent)
that exploit this atomicity abstraction and allow one to build complex systems
from sensible building blocks.

Linearizability doesn’t, however, provide a clear methodology for how one
can build larger objects that are themselves linearizable on top of these objects.
Modern systems such as web servers, databases, and services-oriented architec-
tures need to leverage concurrency in order to efficiently respond to client re-
quests. Linearizable data-structures provide a starting point but they only really

offer base primitives; many layers of code must be built on top of them. Without
an alternative at hand, programmers currently resort to traditional synchroniza-
tion methods such as locking in these layers, leading to code that is difficult
to understand and riddled with notorious concurrency bugs such as deadlock,
livelock, reentrancy, etc. A similar concern holds in the distributed setting. Con-
currency is needed for applications such as SDN controllers and replicated data
structures, but layers are currently built on top of primitives in an ad-hoc fash-
ion. Indeed, large-scale concurrent software is difficult to write and principled
approaches to vertical composition over these layers of abstraction would be
immensely helpful.

Let’s say, for instance, that one has a linearizable concurrent hashtable
CHT that supports put(k, v), get(k), size() and that one wants to implement
move(k1, k2) which should atomically move a value from one key to another. On
the one hand, extending CHT to support the additional method while maintain-
ing linearizability would be difficult because it involves careful reasoning about
how move inter-plays with the existing methods. Yet, on the other hand, this
should be straight-forward because, logically speaking, it can be constructed
from a combination of CHT operations.

Transactional boosting [19] and the theory of coarse-grained transactions [25]
offered the first step in the direction of composing transactional objects. They
showed that transactions need not consist of read/write memory operations but
can, instead, consist of base operations that are methods of a highly-concurrent
linearizable base object (for details, see [19]). The efficiency of boosting stems
from the fact that these “constituent” operations of a transaction are already
highly efficient. With boosting one can build transactions that could start to
look a little like the methods of a higher-level atomic object called, say, a Move-
ableHashtable MHT . In this sense, boosting can be thought of as one layer of
vertical composition, or, “1VC.”

Now what if we want to generalize the vertical composition to higher levels:
nVC? What if we, for example, want to use the (highly-concurrent) Moveable-
Hashtable as the basis for implementing a highly-concurrent Filesystem object?
We might use the MoveableHashtable keys to represent file-paths and values as
the file contents as well as, say, a highly-concurrent linearizable tree to track the
file-path hierarchy. As we move vertically we would like to maintain, as an in-
variant that the operations on every level be atomic, just as was true for the base
operations all the way up to the top, where our filesystem operations unlink,
rename, etc. operate with the appearance of atomicity. To date, although some
implementations permit similar vertical compositions, there is no known theo-
retical framework or vertical composition theorems to achieve this.

In another recent trend, techniques have emerged for synthesizing data-
structure commutativity conditions via abstraction refinement [5] or learning [13].
Others use commutativity conditions to synthesize transactional conflict man-
agement [14,7,10]. We leverage these orthogonal techniques in our work.

This paper. We present a theory that captures the essence of vertically compos-
able transactional objects. We begin by establishing a syntax and methodology

2

for building reversible atomic objects (RAOs). In each layer of the vertical compo-
sition, an upper-level object implements an operation O.mpq with a transaction
that consists of constituent operations on objects in the levels below:

O.mpx̄q
△
“ atomictO1.apx̄1q;O2.bpx̄2q; . . . u

The object hierarchy forms a directed acyclic graph: method calls can only invoke
operations on lower-level objects and the lowest level are linearizable base objects
in a simple wrapper. Our methodology and model explicitly requires that, for
every object operation, transaction begin/commit is directly aligned with the
object’s method invocation/response (respectively). We also require that each
RAO method is associated with its commutativity specification (obtained using
other techniques [14,5,13,10]).

Next, we take a first-class treatment of object method inverses and require
that, by the time a method commits, it must have constructed its own inverse
operation. These inverses empower both (i) the transaction layer above to undo
the effects of its constituent operations and (ii) our novel contention manager
to ensure progress by aborting operations on behalf of the thread. This treat-
ment of inverses bares some similarity to so-called compensating actions in open
nested transactions (see discussion in Section 9) and generalizes the inverses of
boosting [19].

Interestingly, once inverses are established on the base linearizable objects,
all higher-level inverses can be constructed automatically. At each level, the
inverse can be constructed by assembling—in reverse order—the inverses of each
constituent operation. Nonetheless, a programmer may instead choose to provide
one manually, especially in cases where the inverse can be achieved with fewer
base operations.

The main benefit of working with reversible atomic objects is that the model
provide formal guarantees including contextual refinement1 and vertical compo-
sition, leading to systems that are correct by construction. In this way we believe
our approach lifts the Herlihy/Wing notion of atomic objects to a multi-layer
strategy, with implementation flexibility at each level. Finally, semantic model
based on a global logical log gives rise to a novel transactional variant of the
Universal Construction [18].

Contributions. To the best of our knowledge, our work is the first formal treat-
ment of vertical composition of transactional objects. Specifically, we make the
following steps forward:

– A specification of vertically composable reversible atomic objects and well-
formedness criteria thereof. (Section 4)

– A vertically composable semantics of concurrent threads in which abstract-
level operations are composed from constituent base operations. (Section 5)

1 Contextual refinement is more powerful than serializability. It is becoming common
to use contextual refinement for showing the correctness of transactional memory.
Connections to serializability, opacity, TMS, etc. can be found in the literature [3,4].

3

σ σ1 σ2 σ1

O.fpxq

O.f´1pxq

O1.a O2.b O3.c

O3.c
´1O2.b

´1O1.a
´1

FS.moveFile()

MHT.move()
MHT.get() Tree.moveNode()

HT.put()HT.get() HT.remove()

CHT.put()CHT.get()

Inverses

Fig. 1. (Left) Formal structure of reversible atomic objects. (Right) An example highly-
concurrent filesystem reversible atomic object, constructed vertically from other re-
versible atomic objects. (Some detail omitted and replaced with gray boxes.)

– A proof that programs composed with implementations are a termination-
sensitive contextual refinement of the same program composed instead with
atomic specifications, as well as a proof of vertical composition. (Section 6)

– A demonstration of how progress is achieved through a novel treatment of
contention management as an environment context that may, at any point,
invert a transaction’s uncommitted operations. (Section 7)

– A novel transactional variant of the universal construction, arising from our
compositional treatment in terms of a single shared logical log. (Section 8.2)

To our knowledge there are no known models that allow this kind of nVC vertical
composition of transactional objects. As we discuss in Section 8.1, the recent
Push/Pull model can be viewed as 1VC. This model is expressive enough to
cover a wide range of existing transactional implementations. In the next section
we describe an instance of nVC, implementing a highly-concurrent transactional
filesystem out of linearizable base objects.

2 An Illustration of reversible atomic objects

We now introduce our formal model and methodology by giving an example
of how it might appear in the syntax of a suitable future programming lan-
guage. We will take the running example of constructing a highly-concurrent
linearizable filesystem. Formally, a reversible atomic object O implements an
abstract atomic operation f , built from base operations, that it assumes al-
ready behave atomically. Such an object constructs an abstract state trans-
former O.fpxq : Σ Ñ Σ out of one or more constituent (base) state transformers
O1.a, O2.b, O3.c : Σ Ñ Σ, without knowledge of the detailed implementation of
O1, O2, O3. One can view this as the diagram on the left in Figure 1. The dotted
lines are inverses, discussed later.

Filesystem operations touch multiple data structures that must be kept in
sync with each other for integrity, a challenge for concurrent programs. Normally
such filesystems are incredibly complex.

4

FileSystem, MoveableHashtable, and Hashtable Reversible Atomic Objects
Note: Code in gray can be automatically generated by a compiler.

1 class FileSystem[P, V] : RAO {
2 MoveableHashTable[P, V] mht
3 DirectoryTree[P] tree
4 ...
5 optim bool moveFile(p1, p2) = atomictttt conflict(wr :p1,wr :p2,wr : lcapp1, p2q)
6 v = mht.get(p1) ÞÑ inv0
7 if (v is empty) { cmt return (inv0, false) }
8 else { mht.move(p1, p2) ÞÑ inv1
9 tree.moveNode(p1, p2) ÞÑ inv2

10 cmt return (atomicttttinv2; inv1; inv0uuuu, true) }
11 uuuu
12 }

1 class MoveableHashtable[K, V] : RAO {
2 Hastable[K, V] ht
3 ...
4 pess V get(k) = atomictttt conflict(rd :k)
5 v := ht.get(k) ÞÑ skip

6 cmt return (skip, v)
7 uuuu
8 pess bool move(k1, k2) = atomictttt conflict(wr :k1, wr :k2, wr :size)
9 v := ht.get(k1) ÞÑ inv1

10 vold := ht.put(k2, v) ÞÑ inv2
11 ht.remove(k1) ÞÑ inv3
12 cmt return (atomicttttinv3; inv2; inv1uuuu, K)
13 uuuu
14 }

1 class Hashtable[K, V] : RAO {
2 ConcurrentHashtable[K, V] cht
3

4 V get(k) { conflict(rd :k)
5 x = cht.get(k)
6 cmt return (skip, x)
7 }
8 V put(k, v) { conflict(wr :k, wr :sz)
9 vold = cht.get(k)

10 cht.put(k, v)
11 cmt return (cht.put(k, vold), vold)
12 }
13 V remove(k) { conflict(wr :k, wr :sz)
14 vold := cht.get(k)
15 cht.remove(k)
16 cmt return (cht.put(k, vold), vold)
17 }
18 }

Fig. 2. Illustration of a highly-concurrent file system implemented from reversible
atomic objects. The code in gray could be generated automatically by a compiler:
conflict specifications via [14,7,10,13,5] and inverses via dynamic instrumentation.

5

Figure 2 provides an illustration of the modularity of reversible atomic ob-
jects: a pseudo-code implementation of a highly-concurrent filesystem in under
50 lines of code. At the top level, we have a FileSystem reversible atomic object
(RAO) that will provide standard POSIX-like file operations such as moveFile
(a.k.a. rename), mkdir, rm, etc. FileSystem needs to be implemented efficiently
so we implement it using a reversible atomic tree (for directory lookups) and
reversible atomic hashtable (to store the payload file data for each full path):
internal data-structures mht and tree, respectively. They will, in turn, be imple-
mented on top of other RAOs. Ultimately, the lowest layer is formed by wrapping
a linearizable concurrent base object, such as the HashTable RAO which wraps
a linearizable hashtable. A diagram of how this implementation (call stack) cor-
relates to our theoretical model is give on the right in Figure 1.

Consider now the implementation of moveFile in Figure 2. The code in light
gray could be inserted by a compiler (discussed below). While the non-gray
user code of this simple example looks straight-forward and the features of this
method look familiar, there are many behind-the-scenes details to be appreci-
ated. Our methodology and formal model is based on the following structural
rules, which we will discuss in turn:

1. Alignment of transaction with method boundary.
2. Specification of conflict.
3. Invocations of constituent operations.
4. Assembly of inverses.
5. The commit-and-return statement.

Aligning transactions with the method boundary. Reversible atomic objects im-
pose a structure on the way in which transactions are used: they must be corre-
lated with object methods. The body of moveFile is an atomic section, denoted
atomictttt...uuuu. This object view is one of several ways in which we diverge from
so-called nested transactions (see Section 9). Moreover, this atomic block ends
with a cmt return statement that both commits the transaction and returns the
abstract operation’s response (in this case it is boolean) back to the caller. We
will discuss cmt return more later.

Conflict specification. All reversible atomic object methods must provide a con-
flict specification in the form of commutativity: the conditions under which an
invocation of method O.fpxq commutes with all other active operations on that
object. In our formal model, this commutativity relation is defined in terms of
observational equivalence (Section 3.6). These specifications do not have to be
written by hand. A number of recent techniques have appeared in the literature
for generating conflict specifications in the form of commutativity (via abstrac-
tion refinement [5] or learning [13]) and using those commutativity conditions to
synthesize transactional conflict management algorithms such as abstract lock-
ing [14,7,10].

For the reader’s benefit, we illustrate these conflict specifications using sym-
bolic, dynamic access points [10]. This approach allows us to summarize conflict

6

by associating object methods with elements in a symbolic domain of so-called
access points. Take, for example,moveFile in Figure 2. The synthesized [5,10] con-
flict specification for moveFile (Line 5) is conflictpwr :p1, wr :p2, wr : lcapp1, p2qq.
Intuitively, this specification means that moveFile may modify the contents of file
p1, may modify the contents of file p2 or, taking an approximation, modify file
paths in the directory subtree rooted at the least common ancestor of the two
paths. There is also a conflict relation C and operations O.fpx̄q and O.gpȳq are
said to conflict whenever an access point of O.fpx̄q is in relation C with an access
point of O.gpȳq. In addition to the wr prefix, there is also a rd prefix, as seen
in MoveableHashTable. This permits distinction between read/read interactions
and read/write interactions.

Reversible atomic objects leverage the declarative nature of access point spec-
ifications in order to have flexibility in how the runtime system manages conflict.
In Figure 2 we illustrate how a user might guide this choice by annotating meth-
ods with keywords pess and optim. Consider the moveFile operation. In such a
pessimistic case, the transactional system pauses the transaction until there are
no conflicting concurrent operations with access points that are in conflict with
access points wr : p1, wr : p2, wr : lcapp1, p2q. Concretely speaking, one way this
can be accomplished is by translating access point specifications into locking
schemes [19,14]. These schemes ensure that, if two transactions conflict, then
they will both need to acquire at least one lock in common. When a caller in-
vokes the moveFile method, it will acquire the appropriate synthesized locks so
as to ensure it has exclusive access to the the file paths in question. In the opti-
mistic case, an implementation might (logically) furnish each thread/transaction
with its own local copy of the object that they can immediately mutate. Later,
at commit time, the transactional system can check whether there is conflict
between this operation’s access points and those of recently committed transac-
tions. Conflict at the FileSystem layer has nothing to do (directly) with conflict
at the level of the constituent objects: MoveableHashtable and DirectoryTree. We
will later discuss how layers relate and how conflict managers resolve conflict.

Invoking constituent operations. The implementation of an RAO method is free
to perform methods on constituent reversible atomic objects: O1.a, O2.b, etc.
The body of moveFile manipulates methods of constituent objects mht and tree.
moveFile moves the file payload to the new path and then performs a tree manip-
ulation to restructure the directory hierarchy. These constituent operations may
involve return values as in the call to mht.get on Line 6 and moveFile may take
different actions depending on these return values. Looping is also permitted,
provided that the loop eventually terminates.

A key element of reversible atomic objects is that they maintain the invari-
ant that every operation has an inverse. Let’s assume this invariant and note
two things about an operation’s invocation. First, at the location immediately
preceding each operation, the compiler will insert code that captures the contin-
uation [22]. This is a form of checkpoint that will be used in case the operation
is inverted. Second, by way of the invariant each constituent operation, since
it is also a reversible object, will return an inverse operation. These inverses

7

inv0, inv1, etc. are saved for two reasons. First,the inverse operation may be
invoked by the environment contention manager (discussed below). Second, it
may be used in the construction of the overall inverse operation for moveFile, as
seen on Line 10 and discussed next.

Assembling the inverse. Before completing the operationO.fpxq (via cmt return),
a reversible atomic object must prepare the inverse operation O.f´1pyq to main-
tain the invariant. Inverses can be generated automatically by assembling the
inverses of the constituents, as we do for the inverse of moveFile on Line 10.
In other cases the programmer might provide a smarter inverse. The inverses
themselves, while atomic, do not themselves have inverses.

Inverse operations may be used at the next level up. In a transaction at
that higher level, O.fpxq is viewed as an atomic (and reversible) constituent
object and, therefore, may potentially be inverted as discussed in Section 2.1.
There is a subtlety here about how inverses interact with commutativity: how
do we know whether O.f´1pyq is still a valid inverse when there may be other
concurrent operations? This inverse O.f´1pyq is a short-lived inverse and can
only be used during the lifespan of the above transaction. Consequently, since
the above transaction ensures that O.fpxq is free of conflict with any concurrent
operation, it is easy to show that one can commute O.fpxq forward in time, until
it is adjacent to O.f´1pyq and that these two then annihilate each other.

Committing and returning. The method (and transaction) completes with a
single statement cmt return. At this point, the transaction is attempting to
commit. The way in which the commit happens is up to the transactional sys-
tem at this level. A pessimistic implementation will already have ensured that
the current transaction has the right-of-way (i.e. there are no concurrent oper-
ations that have access points in conflict with access points wr : p1, wr : p2,, or
wr : lcapp1, p2q) so this commit event can happen immediately. An optimistic
implementation, on the other hand, would need to perform commit-time con-
flict detection. The first argument to cmt return is the inverse for moveFile.
Once cmt return completes, the operation is considered complete, and control
is returned to the calling object in the next level up.

The overall program consists of concurrent threads P “ pC1 || ¨ ¨ ¨ || Cnq that
are the clients of top-level reversible atomic objects. As with the lower layers,
the clients call reversible atomic object methods, treating them as atomic. The
client cannot use transactions. It need not be reversible nor atomic, nor does it
have to collect inverses of constituent objects. Figure 3 is an example of threads
all operating on the same FileSystem object. The Creator thread generates files,
the Mover thread moves some of the files, and Printer reports the number of
files. These threads can be scheduled in any order. Each takes advantage of the
atomicity of the FileSystem object.

8

class Creator : Thread {
run(FileSystem[K,V] fs) {
for i := 1..100
fs.addFile(”file” + i, i ∗ i); } }

class Printer : Thread {
run(FileSystem[K,V] fs) {
num files = 0;
while (num files < 100)
print fs.numFiles(); } }

class Mover : Thread {
run(FileSystem[K,V] fs) {
while (num moved < 50) {
for i := 1..100 step 2 {
moved = fs.moveFile(”file”+i, ”b”+i);
if (moved) num moved++;

}
}

}
}

Fig. 3. Example clients using a reversible atomic FileSystem object. Creator makes files
named file1 to file100, Mover moves with even-numbered names to moved file#,
and Printer prints the number of files forever.

2.1 Across this layer: concurrency, progress, refinement.

Before we look at the implementation of vertically composed MoveableHashtable
and DirectoryTree, let us discuss contention that may arise from other threads
invoking operations on FileSystem. Transactional memory systems address con-
tention with a so-called contention manager that implements some policy, de-
ciding whom should be aborted [41,40,42]. If the contention manager is able to
also know when deadlocks occur (e.g. [23]), then it can implement a policy that
ensures overall progress.

In our formal model, the contention manager is an environment context that
can not only control the scheduling of transactions [30], but also detect deadlock
transactions and partially abort operations by invoking the operations’ inverses
on behalf of the transaction. Combining these elements, we show a simple such
environment that is able to ensure that every transaction eventually completes
(Section 7). Consider this sequence between transactions τ and τ 1:

τ begins; τ 1 begins; τ 1 completes mht.move(7,8); τ completes mht.move(5,6)

Now imagine that τ 1 wants to invokemht.get(6) and τ wants to invokemht.get(8).
There is a deadlock here because each transaction would like to execute an op-
eration that conflicts with one already completed by the other transaction. To
resolve this deadlock, the environment can clear a path for the oldest transac-
tion τ to complete by executing the inverse of τ 1 operation mht.move(7,8) and
then preventing τ 1 from being scheduled until τ commits. When a later conflict
occurs with some other transaction τ2, the environment may have to abort and
unschedule τ (if τ2 is older than τ) or else abort and unschedule τ2.

In our model, logically speaking, threads are aware that the environment may
take charge and invert operations on behalf of them. When a thread finds that
the environment has inverted one or more of its operations (always in reverse
order) back to some earlier program location, the thread must resume execution
at that location via a previously captured continuation.

9

Contextual Refinement. The first formal result of this paper (Section 6) is that
reversible atomic objects provide a contextual refinement guarantee. (Note: Con-
textual refinement is stronger than serializability [3,4].) If objects in the system
follow the above criteria, abiding by the conflict specifications and establishing
inverses then, for every (multi-threaded) program P , execution of P composed
with an object’s implementation CO is a contextual refinement of P composed
with the object’s corresponding atomic specification SO, denoted:

rrCOssinterleaved Ď rrSOssinterleaved

Our formalization (Section 5) is a compositional semantics in which abstract-
level operations are composed from constituent base operations. Threads are
executed in the context of an environment scheduler. By quantifying over all
possible schedulers, each individual trace of the system is deterministic. Threads
and environment communicate by appending events to a single shared (logical)
event log. This does not mean that we would advocate that implementations use
a physical log. Rather, in recent years it has been shown that a log can serve
as a reasoning technique [24,16] technique by reducing the interaction between
threads to a core essence of events. With the logical log treatment, we provide
novel representations of transactional concepts including: schedule, transactions
indicating they cannot make progress and contention management.

2.2 Below this layer: vertical composition.

FileSystem is built from two constituent reversible atomic objects, one of which
is the MoveableHashtable, defined in the middle of Figure 2. This is a new type of
hashtable that provides an operation to move data between keys, using a single
Hashtable RAO as a constituent object. The move operation, defined on line 8
has three constituent operations: ht.get(k1), ht.put(k2, v), and ht.remove(k1).
The MoveableHashtable’s move operation must, as always, construct its own in-
verse. At this layer, notice that we have decided to execute transactions pes-
simistically (pess), again demonstrating the flexibility of permitting different
transactional implementations at different vertical layers. Consider a pair of
upper/lower levels such as MoveableHashtable and Hashtable. The conflict spec-
ification of the lower level (Hashtable) is used by the runtime system to govern
the execution of the constituent operations of atomic sections in the upper level
(MovableHashTable.get). This specification may be used differently depending
on whether the upper level is pessimistic or optimistic.

Base objects. The RAO model is rooted on the linearizability (and performance!)
of the base concurrent objects. This is accomplished via a wrapper such as
Hashtable in Figure 2 that wraps a linearizable ConcurrentHashtable (cht). This
wrapper simply lifts the cht operations, specifies conflict and constructs inverses.
These inverses “get the ball rolling,” by allowing higher level operations to be
able to automatically construct (at least default) inverses.

Although this particular implementation of MoveableHashtable uses the same
key space as Hashtable, they are conceptually different. Therefore, we denote

10

Hashtable keys/values with different fonts: k :K, v :V. The conflict specification
of put, for example, pertains to key k and the fact that the overall size of the cht
(denoted as sz to distinguish from size) may change. The Hashtable put method
first calls the concurrent hashtable cht.get method, saving the return value vold.
This is needed in order to be able to construct an inverse. Next, cht.put is called,
atomically updating the ConcurrentHashtable. Finally, this wrapper returns the
newly constructed inverse cht.put(k,vold) and returning the old value to the caller.

This Hashtable reversible object wrapper does not execute transactions. These
constituent cht operations will never be inverted or be the reason for conflict.
Both inversion and conflict is covered by the wrapper Hashtable operation.
For example, the reversible atomic Hashtable.put operation has access points
wr :k,wr :sz. This specification covers both cht.get(k) and cht.put(k,v).

In Section 6.1 we show formally that objects can be vertically composed.
Theorem 2 says that, for any two objects O and Q with implementations/spec-
ifications CO{SO and CQ{SQ, that

rrCO ‘ CQss Ď rrSO ‘ SQss

This relationship means that vertically composing object implementations pre-
serves the contextual refinement guarantees against object specifications.

2.3 Transactional Universal Construction

Our compositional semantics that involves threads communicating via a logical
log leads to a novel transactional variant of the so-called universal construc-
tion [18]. Our construction allows us to create a transactional concurrent version
of any kind of sequential data-structure implementation D. Briefly, as in the
original construction [18], each thread i maintains its own replica Di of the
data-structure. They then coordinate via a shared log that supports an atomic
append/enqueue operation. This log is the authoritative history of the state of
D, as a list of the operations that have been performed. Threads scan the log
and replay the operations on their local Di replica. When a thread wishes to
perform an operation on D, it competes to append the name of the operation
to the log.

In order to support transactions, a few extensions are needed. First, we first
augment the type of log entries, so that events other than operations can also
be recorded. Log entries have a transaction identifier, and threads also append
begin and commit messages to the log. Inverses may be appended by a contention
manager, signaling an abort.

The key abstraction is that threads, when attempting to append, perform
an algorithm we call try cmd. This algorithm attempts to append a new log
entry. The log responds with either Success indicating that the entry has been
appended, Conflict indicating that there is another uncommitted operation that
conflicts, or Inverted indicating that some or all of the transaction’s operations
have been inverted. The try cmd abstraction permits a range of transactional

11

Ev ::“ pτ, Ivk O.fpxqq Invoke an abstract method
pτ, aq Implementation base operation
pτ, a´1q Cancel a base operation
pτ,CmtRet O.fpyqq Commit and establish inverse
pτ,Termq Thread termination
pτ,▽q Yield to another thread

Fig. 4. Events of the system.

policies from pessimistic to optimistic. The more eagerly a thread appends op-
erations to the log, the more pessimistic it is. Alternative, a thread may opti-
mistically perform all operations on a thread-local copy, and attempt to append
all the operations at once just before committing.

3 Preliminaries

In this section we establish some formal preliminaries. Our formalism uses a
logical notion of a global log of events (i.e. a history). In this section we describe
how object transactions interact with the log, as well as inverses and conflicts.

3.1 States, Operations, Event Logs

We will work with a state space Σ. Operations are denoted by a, b, etc. and they
are of type Σ Ñ Σ. We let Ops be a set of base operations.

Global Log and Threads. We will work with a globally shared system log ℓ of
type Ev˚, which records a sequence of threads’ events from a domain of events
Ev. We define events in more detail in Section 3.3 and a list of them can be
found in Figure 4. The domain of logs is L and we let T be a domain of unique
thread identifiers, with τ to denote a single thread ID. For now, one possible
event is pτ, aq where a is a base operation. We use the notation ℓris to mean
the ith element of the log ℓ. We will use ¨ to denote the append operation on
lists/sequences such as event logs. We write ℓ ¨ pτ, aq to mean ℓ ¨ xpτ, aqy, where
xpτ, aqy denotes the sequence that contains the single event pτ, aq.

We abstract away thread-local internal details, treating a thread configuration
as pst, c, rq which is a thread-local state st P St, a continuation code c P Cd, and
a function r P R : L Ñ pSt ˆ Cdq Ñ pSt ˆ Cd ˆ Lq. We denote such a transition

as pst, cq
r ℓ

ÝÝÑ pst1, c1, ℓ1q which, from a start configuration pst, c, rq and current
system log ℓ (described next), generates a sequence of events ℓ1 and a next
configuration pst1, c1, rq.

Observations. An observation obspℓ ¨ pτ, aqq is the return value of the last oper-
ation a in log ℓ ¨ pτ, aq and we will assume that it is uniquely determined. For

12

example, a reasonable semantics for a hashtable would have behavior such that
@ℓ. obspℓ ¨ pτ, ht.putp3, 42qq ¨ pτ, ht.getp3qqq “ 42. We use obsipℓq as shorthand for
the observation of ℓr0s ¨ ¨ ¨ ℓris.

3.2 Objects

We have a collection of objects O1, ..., On, and each object has access to an
isolated region of the state space. An object method is given by O.fpxq where O
is the name of the object, f is the name of the method, and x are the arguments,
which is a sequence over some domain D.

Given an object O and one of its methods O.fpxq, we define specO.fpxq :

D˚ Ñ Ops˚. Such a specification function returns the exact sequence of op-
erations to be performed for the given arguments to the method. As a simple
example, if the method O.fpxq performs the base operation sequence a, b if x ą 0
and c otherwise, then the function specO.fpxqpxq would simply return the cor-
responding sequence according to the value of x. Our model does not preclude
object methods that involve looping or even recursion, per se. We simply re-
quire that the method consist of a finite sequence of base operations. (After
all, linearizability is termination sensitive.) Furthermore, we note that a method
O.fpxq cannot call another method O.gpxq of the same object O. To simulate
such functionality, one can use a different object on a higher layer that makes
calls to both O.fpxq and O.gpxq as needed. On the other hand, helper methods
could assist with defining or implementing (terminating) recursive calls.

Next, let specLogO.fpxq : L ˆ D˚ Ñ L be a mapping that, given a log ℓ

and a sequence of arguments x for the method O.fpxq, traverses the log ℓ and
consults the function specO.fpxq. It produces the correct sequence of events in
the log corresponding to: invoking the method, executing the correct sequence
of base operations and then appending the event of committing and returning.

3.3 Events

In addition to the base event pτ, aq, there are other events that can be emitted

by a thread transition
r ℓ

ÝÝÑ. The events are given in Figure 4. As mentioned
above, event pτ, aq is an instance of thread τ performing operation a. The first
event pτ, Ivk O.fpxqq models thread τ invoking an operation O.fpxq. If O.fpxq
is already an atomic event, then the next method generated by τ is a response
event pτ,CmtRet O.fpxqq whose observations give the operation’s return value.
Otherwise, O.fpxq may be implemented with a transaction. We will describe
this in the next section.

The event Term signals thread termination and event ▽ signals that the
thread is yielding to the environment (described later). There is no explicit
abort event; we model abort by a series of cancellation steps.

3.4 Specifications and Implementations

Given an object O, we define its specification SO : L Ñ L to be a mapping
that given a log ℓ returns an extension of it ℓ1 “ ℓ ¨ ℓ2, where ℓ2 comprises

13

the necessary events to be completed until the CmtRet for the object method.
Formally, suppose ℓ1, ℓ2 are logs such that ℓ1 “ ℓ ¨ pτ, Ivk O.fpxqq and ℓ2 “
specLogO.fpxqpℓ1q. Let ℓ2,p be any prefix of ℓ2 and ℓ2,s the remaining suffix (such
that ℓ2 “ ℓ2,p ¨ ℓ2,s). Then SOpℓ1 ¨ ℓ2,pq is equal to ℓ2,s ¨ pτ,▽q.

The implementation of an object O, denoted by CO : L Ñ L, also returns
an extension on the given log, but in contrast to SO, this extension does not
contain all necessary events, but contains only the next event, together with a
yield event. Formally, for any log ℓ, if SOpℓq “ ℓ1 ¨ pτ,▽q, then COpℓq “ e ¨ pτ,▽q,
where e is the first event in the log ℓ1, in the case where ℓ1 is not the empty
sequence, and COpℓq “ pτ,▽q otherwise.

3.5 Parameterized base operations

We require a prefix-closed predicate on logs allowedpℓq that indicates whether
@i P r0, lenpℓq ´ 1s that obsipℓq is valid according to the sequential specifications
of the objects. For convenience we will also write ℓ allows n which simply means
allowedpℓ ¨ tnuq. Taking a stack S, for example, and ℓ “ tS.pushp5q ¨ S.poppqu we
would say that allowedpℓq provided that obspℓq “ 5.

We define a precongruence over operation sequences ℓ1 ďobs ℓ2 by requiring
that all allowed extensions of ℓ1, are also allowed extensions to ℓ2. We use a
coinductive definition so that the precongruence can be defined up to all infinite
suffixes. Formally, for all ℓ1, ℓ2,

allowedpℓ1q ñ allowedpℓ2q @a. pℓ1 ¨ aq ďobs pℓ2 ¨ aq

ℓ1 ďobs ℓ2
gfp

Informally, the above greatest fixpoint says that there is no sequence of observa-
tions we can make of ℓ1, that we can’t also make of ℓ2. This is more general than
simply requiring that the set of states reached from the first sequence be included
in the second. Unobservable state differences are also permitted. This relation is
intentionally asymmetric because contextual refinement (defined later) only re-
quires inclusion. Notice that one can always define a trivial observation function
such that all traces will be allowed, but such definitions arent useful. Consider
an example of a simple natural number counter, initialized to 0 and the trace
pτ, incrementq¨pτ, decrementq¨pτ, decrementq. Here we would set up an observation
function obs that returns “fault” for the third operation.

We also require an abstract version of the allowed predicate, denoted by
{allowed, that indicates whether the observation of each CmtRet event is valid.

More generally, {allowed can be parameterized by a set of objects O1, . . . , On

in which case the predicate indicates whether the observation of each CmtRet
event, restricted to the methods in the set of objects, is valid. Using the predicate
{allowed, we define the notion of abstract observational precongruence:

{allowedpℓ1q ñ {allowedpℓ2q @ℓDℓ1.ℓ1 ¨ ℓ ďyobs ℓ2 ¨ ℓ1

ℓ1 ďyobs ℓ2
gfp

14

3.6 Inverses and conflict

We assume that for every operation a, there is an inverse operation a´1, which
is to be exactly such that @σ P Σ, a´1papσqq “ σ. Unfolding the structure of a,
we say that O.f´1pyq is the function such that @σ, O.f´1pyqpO.fpxqpσqq “ σ.
Notice that constructing an inverse operation f´1 may require arguments other
than those passed to f . The inverse operations are constructed dynamically,
and in the worst case, such as with some write operations, the original state σ

might have to be passed as an argument to the inverse operation. Many existing
implementations already have a requirement of inverses [19,33,35].

We define a conflict relation with respect to an operation sequence and ob-
servations thereof as follows:

ℓa
ℓ
Ÿ ℓb ” ℓ ¨ ℓa ¨ ℓb ďobs ℓ ¨ ℓb ¨ ℓa

Unfolding the definition of ďobs, one can see that conflict in one direction (left-
moverness [28]) means that ℓa and ℓb make the same observations in either order
and the sequences ℓ ¨ ℓa ¨ ℓb and ℓ ¨ ℓb ¨ ℓa are observationally equivalent prefixes.

We say log ℓa commutes with log ℓb with respect to log ℓ, if ℓa
ℓ
Ÿ ℓb and ℓb

ℓ
Ÿ ℓa.

4 Vertical composition through abstraction

In this section, we describe how an object implementation CO (or specification
SO) constructs an overall operation O.fpxq out of a series of base operations.
We then give well-formedness criteria for these objects.

4.1 Abstract operations

The events in Figure 4 start in the direction of vertical composition: an ab-
stract operation O.fpxq, with atomic semantics S.fpxq is implemented via a
series of transaction events involving base operations a, b, We now discuss
how an object implementation may construct abstract operations (mutations)
and observations (return values) from the mutations and observations of these
base operations. An object operation O.fpxq is implemented with transactions
in a particular way (unlike nested transactions). O.fpxq consists of a transaction
immediately within the body of the method:

fpxq
△
“ atomictttt ... cmt return pinv, kq; uuuu

Here, k is a depiction of the observation of the overall abstract operation O.fpxq.
A thread calling this operation is modeled as the following event sequence:

pτ, Ivk O.fpxqq, pτ, aq, pτ, bq, pτ, cq, pτ,CmtRet O.fpxqq

The invocation of O.fpxq also signals the beginning of a transaction (unlike
nested transactions, there is no separate “begin” event).

15

We call such an event sequence (or log segment), an abstract operation se-
quence. In other words, an abstract operation sequence ℓ is inductively defined as
a sequence pτ, Ivk O.fpxqq ¨ℓ1 ¨ pτ,CmtRet O.fpxqq, where ℓ1 comprises a sequence
of base operations and abstract operation sequences. Furthermore, in such a case
we call this abstract operation sequence, an O.fpxq abstract operation sequence.
We define the predicate aosτ pℓ, O.fq that holds for a segment ℓ when it is an
O.fpxq abstract operation sequence over the thread τ .

4.2 Well-formedness

We now give some well-formedness constraints on objects and threads. We first
have a basic well-formedness constraint, requiring the objects to yield sensible
event histories. We formalize this with an inductive predicate wfirτ,O.f over logs.
This predicate is omitted for lack of space but, intuitively, means that inverses
are used only to cancel previously issued operations from the same invocation.

A second condition, as discussed in Section 2, is that an object method
O.fpxq must construct a corresponding abstract inverse O.f´1pyq, that is re-
turned to the caller in the CmtRet event. The inverse may be used at that higher
level by the parent or, more likely, the contention management scheme. This
can be done incrementally during the transaction or else immediately before the
transaction commits.

We will further require that threads only generate pτ, aq events provided that
a commutes with every operation b from another uncommitted transaction. To
this end, we have a few definitions:

– activeOpsτ pℓq Ď T ˆOps: the subsequence of events with basic operations in
ℓ corresponding to τ (such that there is a pτ, Ivkq event in ℓ, but no correlated
pτ,CmtRet q event.) in the order they were generated

– activeOps τ pℓq Ď T ˆ Ops: the subsequence of events with basic operations
in ℓ corresponding to all τ 1 P T ztτu (such that there is a pτ 1, Ivkq event in ℓ,
but no correlated pτ 1,CmtRet q event) in the order they were generated

We can now give the commutativity well-formedness condition:

wfcτ pℓq aosτ pℓO.f , O.fq activeOps τ pℓq
ℓ
Ÿ ℓO.f

wfcτ pℓ ¨ ℓO.f q

wfcτ pℓq activeOps τ pℓq
ℓ
Ÿ pτ, aq

wfcτ pℓ ¨ pτ, aqq

wfcτ pℓq e P tCmtRet, Ivk,Term, a´1u

wfcτ pℓ ¨ pτ, eqq

As an example, the second rule above intuitively means that every time thread
τ generates a pτ, aq event, it commutes with all uncommitted operations of other
transactions. All other events are well-formed. Overall, we say that an object is
well-formed if it satisfies both wfirτ and wfcτ for all τ .

16

Semantics
E ℓ T “ pℓ1, τq

ℓ,K, pT, tmq
E

ÝÑ ℓ ¨ ℓ1, τ, pT, tmq
Env

τ P T tm τ “ pst, c, rq st, c
r ℓ

ÝÝÑ st1, c1, ℓ1 ¨ e e P t▽,Termu

ℓ, τ, pT, tmq
τ

ÝÑ ℓ ¨ ℓ1 ¨ pτ, eq,K, pT, tmrτ ÞÑ pst1, c1, rqsq
Thr

Fig. 5. The rules for Reversible Atomic Objects.

5 Compositional semantics

We now describe a compositional game semantics that combines threads (given
as a composition of CO/SO agents) with environments. We define a machine that
is a game between a group of threads and an environment E from domain E, com-
municating via a shared log ℓ. Threads invoke object operations pτ, Ivk O.fpxqqq.
The implementation of these operations, provided by CO or SO generates events
for base operations a, b, ... and then a response is generated. Thread execution
may yield and relies on environment E for scheduling. A similar use of a shared
log for communication appears elsewhere [24,6].

Definition 1 (RAO Game). An RAO Game G “ pE , V, q is a game between
a set of threads/transactions and an environment E. Game vertices V : Lˆ T ˆ
pPpT q ˆT Mq include the shared log ℓ, the current transaction’s identifier τ , the
set of threads in hand T Ď T and a mapping tm : T Ñ pSt ˆ Cd ˆ Rq.

A partitioning on the vertices is induced, separating the vertices VE “ tpℓ, τ, q |
τ R T u where it is the environment’s turn and the vertices VT “ tpℓ, τ, q | τ P T u
where it is the turn of one of the threads in hand. VT can be further partitioned.

Edges. The edges have two different types
τ

ÝÑ and
E

ÝÑ, given in Figure 5. The
Env rule occurs when the current player τ is not in hand T . We denote such
a thread with the symbol K. The environment takes a step, leaving the current
thread pT, tmq untouched and yielding some new log events ℓ1 and schedules the
next thread τ 1 P T .

The environment E : L Ñ PpT q Ñ pL ˆ T q is taken from some domain
E. In the simplest form, the environment can be thought of as a scheduler. We
assume that the environment is deterministic, shifting the nondeterminism into
the choice of E from domain E.

The Thr rule occurs when the current player τ is in T . Here, the thread’s
configuration pst, c, rq is loaded and a transition is taken under the current log ℓ,
emitting new events ev ¨▽ or ev ¨ Term. These events are used to construct the
log ℓ1, the current thread is set to K and the environment is consulted. Finally,
all the accumulated events are enqueued and the tm is updated.

17

Merging Thread Components. The compositionality comes from the fact that
it is easy to merge two thread groups T1 and T2. The horizontal merge ‘H is
defined as:

pT1, tm1q ‘H pT2, tm2q ”

ˆ
T1 Y T2, λτ.

"
tm1 τ if τ P T1

tm2 τ otherwise

˙

Object Components. Objects contain the implementation of operations and the
implementation is executed on behalf of the calling thread. We define the vertical
composition between a thread component and an object component’s implemen-
tation CO as follows:

pT, tmq ‘V CO ” pT, λτ.let tm τ “ pst, c, rq in pst, c, r Y rOqq

where rO contains the implementation of CO which may consult the log ℓ in
generating events. In particular, for any ℓ where COpℓq is defined, and for all
st, c, we define rOpℓqpst, cq to be equal to pst, c, ℓ1q, where ℓ1 “ COpℓq.

We also have the specification component SO of an object O, and define
composition between a thread component and the specification component SO

as follows:

pT, tmq ‘V SO ” pT, λτ.let tm τ “ pst, c, rq in pst, c, r Y rSqq

Here, rS is such that for all ℓ ¨ pτ, Ivk O.fpxqq, and for all st, c,

rSpℓ ¨ pτ, Ivk O.fpxqqqpst, cq “ pst, c, ℓ1q,

where ℓ1 “ SOpℓ ¨pτ, Ivk O.fpxqqq. Notice the difference between rO above and rS
here, which is that rS works only on the logs that end with the method invocation
event. For what follows it is clear from the context when we are using the
horizontal merge and when we are using the vertical composition, and thus use
the symbol ‘, without subscripts, for both cases. From the above composition
rules, one can construct more elaborate compositions between groups of threads
and objects. Note that for objects and specifications, the operator ‘ is not
commutative.

6 Contextual refinement & vertical composition

In this section we give our main theoretical results. We show that programs
composed with implementations in this framework are a contextual refinement
of the same programs instead composed with atomic specifications and that
layers can be composed vertically. We begin by defining traces.

A trace of a game is an infinite alternation between a group of threads and the
environment, starting with the latter and taking turns moving a token through
the game graph.

Definition 2 (Trace). For a set of threads T , initial value tm0, and environ-
ment E a trace ΠppT, tm0q, Eq of the game is a sequence of the form

ǫ,K, pT, tm0q
E

ÝÑ ℓ1, τ1, pT, tm0q
τ1ÝÑ ℓ2,K, pT, tm2q

E
ÝÑ ℓ3, τ3, pT, tm2q

τ3ÝÑ ...

18

We lift observations to traces and say that an observation obsipΠq of a trace
is simply the observation obsipℓiq, which is the same for all steps of the trace
after which ℓ has size at least i.

Whole-program semantics. For a program P “ pT1, tm1q‘¨ ¨ ¨ ‘pTn, tmnq we can
now define the whole-program semantics:

rrP ssE ” tΠpP, Eq | E P Eu

Definition 3. We say that a system EA with object implementation CO con-
textually refines a system EB with object specification SO written rrCOssEA

Ď

rrSOssEB
, if for every EA P EA and every P , there exists EB P EB such that

ΠpP ‘ CO, EAq ďyobs ΠpP ‘ SO, EBq.

We study two particular classes of environments, the interleaved ones (de-
noted Einterleaved), and the atomic ones (denoted Eatomic). An environment EI in
the former class, can schedule any thread irrespectively of which thread’s action
was last performed, whereas an atomic environment EA, will only switch threads
if the last event in the log is of the form pτ,▽q, for some τ , and schedules the
thread τ otherwise.

Theorem 1. For any object O we have

rrCOssinterleaved Ď rrSOssinterleaved

Proof. The proof can be found in the Appendix.

6.1 Vertical composition of contextual refinement between
implementations and specifications

Theorem 2. Let O and Q be two objects. Then

rrCO ‘ CQssinterleaved Ď rrSO ‘ SQssinterleaved.

Proof. The proof can be found in the Appendix.

7 Progress

In this section we describe a novel treatment of contention management as an en-
vironment that breaks deadlocks and ensures progress. The key is to use the fact
that inverses are always available, that there is a common shared log, and that
a priority scheme can be used that ensures the oldest transaction will commit.

Most of the information the environment needs in order to do contention is
already provided by the log. However, the environment also needs to know what
operations deadlocked threads would like to do. We thus augment the pτ,▽q
event to instead be pτ,▽aq where a is the operation that transaction τ would

19

like to perform but currently is unable to. The environment can then cross-
reference this with the uncommitted operations of other transactions, consulting
the commutativity specifications for conflict.

Our use of shared logs and consistent availability of inverses means that
the environment can serve as a contention manager, logically, by appending an
operation inverse pτ, a´1q on behalf of thread τ that generated event pτ, aq. The
thread τ becomes aware of this inverse by observing the log. We further require
that a well-formed thread will take note of these inverse operations and act
appropriately.

As an example, consider the following log:

ℓ “ pτ1, Ivk q, pτ1, aq, pτ1,▽q, pτ2, Ivk q, pτ2, bq, pτ2,▽q,
pτ3, Ivk q, pτ3, cq, pτ3,▽q, pτ1,▽eq, pτ2,▽f q, pτ3,▽gq

the last three ▽ events indicate that threads τ1, τ2, τ3 (resp.) are stuck trying
to perform operations e, f, g respectively. Let us say that a conflicts with f , b
conflicts with g, and c conflicts with e. Then there is a deadlock cycle and none
of tτ1, τ2, τ3u are able to make progress.

We will now describe a simple contention management [41,40,42] policy that
ensures that all transactions eventually terminate. We can instantiate a base
environment that has a simple scheduler protocol that is able to resolve dead-
locks. First, let us say that deadlockedpℓq is the set of deadlocked threads and
oldestpT, ℓq indicates that thread whose Ivk event is earliest in the log. Now, we
can define the environment as:

Ecm(ℓ, T):
let pause ℓ τ = rev mkSeq tpτ, a´1q | @pτ, aq P activeOpsτ pℓqu in
λ ℓ T .
let T 1 = deadlocked(ℓ) in
if T 1 = H then choose(ℓ, T)
else let τ “ oldest(T 1,ℓ) in

(concat [] (map (pause ℓ) T 1zτ), τ)

This environment determines which transactions are deadlocked. If there are
none, then it defaults to making a nondeterministic decision. Otherwise, it de-
termines the oldest transaction, and inverts the operations of all other deadlocked
threads by generating a sequence of events on behalf of each such thread (in the
reverse order that they were generated). Finally, it marks τ as the next thread
to execute.

This is overly conservative: the above contention manager may abort more
transactions than necessary. Also, it may not need to abort all active operations.
It could do better by considering which particular operations cause conflict for
the oldest transaction. However, it is sufficient to yield provable progress guar-
antees and comparative analysis of conflict management strategies is beyond the
scope of this paper.

Returning to the above example, Ecm may return the sequence of events
pτ2, b

´1q, pτ3, c
´1q and schedule τ1 to execute next.

20

8 Discussion

We now discuss existing transactional implementations and how they are cap-
tured by the reversible atomic object model. We then describe how our semantics
gives rise to a novel transactional universal construction.

8.1 Instances and examples

To our knowledge there are currently no theories or systems that implement this
kind of multi-level vertical composition (nVC) of transactional objects. We offer
the first example of such a thing in Section 2.

Coarse grained transactions [25] and Push/Pull [24] offer formal models of
1VC: threads executing transactions over a single layer of atomic objects. These
models provide detail of thread-local semantics, such as the following rules from
Push/Pull: Apply, Unapply, Pull, Unpull. These rules involve careful track-
ing of thread-local semantics via thread-local logs. These rules are abstracted
away in RAO but could be seen as a way to enforce the particular shape of the
thread-local state st, code c, and transition relation r.

As for the shared state, the Push/Pull rule has a singled shared log G. The
Push/Pull rule Push is taken to be a pτ, aq event in RAO, and Unpush is taken
to be a pτ, a´1q event. We can thus reconstruct the Push/Pull shared log G by
replaying the history of RAO events, appending an entry to G when there is a
pτ, aq event and dropping the entry when there is a pτ, a´1q event.

Our treatment of inverses in RAO also permit us to express checkpoints. Her-
lihy & Koskinen [22] showed that checkpoints can be established in a (boosted [19])
transaction over object operations. Expressing this in a reversible atomic object
is straight-forward: there is, by design, a checkpoint in between each constituent
object operation. In the RAO semantics (and in implementations), one returns
to a checkpoint, simply by performing inverse operations. This inherent check-
point nature is exploited by the contention manager: it can strategically choose
from among these checkpoints so that it only inverts what is needed to escape
deadlock.

Many read/write STM systems (TL2 [9], TinySTM [11], McRT [39], etc.) can
be viewed as transactional objects (1VC), where we take the memory to be a base
object. These systems are typically either optimistic [9,11,39] or pessimistic [31].
Our formal framework abstracts over thread implementation, leaving the ques-
tion of opacity [17] up to the threads: they may choose to view or ignore effects
of uncommitted transactions. Some systems permit transactions to view these
effects, establishing dependences between transactions [38].

8.2 Transactional Universal Construction

The semantics rrP ssE in Section 6 is based on a logical log and gives rise to a
novel transactional version of the universal construction. As in the original uni-
versal construction of Herlihy [18], our construction provides a theoretical means
of building a concurrent object merely from a sequential implementation of the

21

same object. The essence of the idea is for each thread τ to maintain a replica
Dτ of the data-structure D. The logical state of D is defined based on a shared
log. This shared log supports a single wait-free enqueue operation. Threads co-
ordinate by attempting to enqueue the operations they wish to perform on D.
Due to concurrency, this is a competition and the winner’s method invocation
becomes the next log entry. Meanwhile, if a thread observes that it was beat to
the punch, it replays those other threads’ operations on its local replica. The
idea is similar to state machine replication [37].

With the advent of transactions, the universal construction is more subtle in a
few ways. During a transaction threads are performingmultiple operations, so we
must track, via transaction identifiers T , which operations correspond to which
transaction. Additionally, transactions must append entries for Ivk and CmtRet.
To this end, extend the type of an entry in the queue to permit identifiers and
these additional kinds of events. Moreover, to support reversibility, the queue also
permits inverse operations. A thread’s operations may be inverted underneath
it, in which case the thread can no longer append the method event without first
accounting for the inverse.

For lack of space, here we summarize the key abstraction of our transactional
universal construction. More detail including a pseudo-code implementation can
be found in Appendix B. The key is an API called try enqueue defined as:

cmd ::“ ta, Ivk,CmtRetu
rsp ::“ tSuccess,Conflict,Abortu

try enqueue : T ˆ cmd Ñ rsp

Transactions, when they wish to append an entry to the queue invoke try enqueue.
Commands cmd are either a constituent operation a, transaction begin, or a
transaction commit (respectively). The outcome of this synchronized operation
is one of three possibilities. Success means the invocation was appended to the
log. Conflict means the invocation conflicts with an entry already in the queue.
In this case, the thread may either wait or invert some of its own operations.
Finally, Abort means some operations of the transaction have been inverted (by
the contention manager). In this case the thread must update its local state.

9 Related Work

Transactional boosting. As discussed in Section 1, reversible atomic objects can
be seen as a generalization of boosting that permits multiple levels of vertical
composition, per-layer implementation flexibility. Moreover, our work provides
a formal account.

Nested transactions. The desire for vertically composable methods is not a new
idea. In a similar spirit, nested transactions [35,32,34,33] aim toward a different
form of vertical composition. This line of work, growing out of the database
community [34], is concerned with complexity database-style transactions that

22

have inherent nesting and a need for serializability. Some of works also propose
using commutativity and inverses as part of a multi-level scheme.

The nested (and database) transaction work, many of which predate lineariz-
ability [20], are not centered around the idea of an atomic concurrent object.
Instead, these works are tied to a viewpoint of a single, global shared memory.
Thus, as one builds nested transactions of increasing depth, all layers share ac-
cess to the same base memory and all transaction layers are handled by the
same monolithic transactional implementation. Several issues arise if one tries
to extend such a view to establish vertical composition including: (1) imprecise
definition of layers, (2) building mechanisms for isolation/encapsulation intro-
duces immense complexity, and (3) the global nature of the runtime precludes
the ability to use different synchronization protocols at different levels. Perhaps
since their focus has not been on developing verified systems, to date, they have
not explored a framework of atomic objects.

We believe that, in contrast, our theory of vertically composable transactional
objects has several benefits:

– Clearer semantics. RAO has a clean semantics, while also permitting a va-
riety of implementation choices, and vertical composition (see Sections 3-7).

– Expressive contention management. Since we require inverses to consistently
be available, a contention managing environment can be used to abort trans-
actions. Using a priority scheme, progress can be ensured.

– Ease of implementation. Reversible atomic objects make it more straight-
forward for a non-expert to build complex concurrent systems. Many details
are abstracted away from the programmer and can be accomplished by a
compiler or runtime.

– Beyond transactions. Our theory allows one to incorporate atomic objects
that aren’t even transactional.

Reversible atomic objects have syntactic nesting, but not all nested transactions
are reversible atomic objects. An example of a nested transaction that is not a
reversible atomic object is given in Appendix C.

Transactional object implementations. Two recent works have aimed at devel-
oping real-world implementations of transactional data-structures. Herman et
al. [21] recently described a way of implementing transactional data-structures.
They build on top of a core infrastructure that provides operations on version
numbers and abstract tracking sets that can be used to make object-specific
decisions at commit time. Similar work by Spiegelman et al. [1] describes how to
build data-structure libraries using traditional STM read/write tracking prim-
itives. In this way, the implementation can exploit these STM internals. These
data-structures can combine pessimistic and optimistic implementations. This
strategy is appropriate for STM experts, but doesn’t provide a general theory
for vertical composition.

Universal construction. The original construction is due to Herlihy [18]. Crain
et al. [8] describe a universal construction for atomic read/write objects based

23

on a specific STM setup of m processors, n processes, and some assurance of
progress. However, they don’t appear to unearth a general methodology. There
is also a known similarity between multi-core universal construction and state
machine replication [37] in distributed systems.

Other works. The Push/Pull model provided a formal semantics for describing a
range of transactional implementations [24]. At a technical level, the Push/Pull
model uses thread-local logs for describing detailed thread-local behavior. We
abstract away these details. The key distinction is that the Push/Pull model does
not investigate how transactional objects can be composed, nor does it provide
contextual refinement results or liveness guarantees. However, as discussed in
Section 8.1, reversible atomic objects was designed so that it still captures the
range of implementations covered by Push/Pull.

Many have formalized correctness criteria of various STM implementations.
Recently, it was shown that TMS is equivalent to contextual refinement [4] for the
case where shared and local variables are rolled back when a transaction aborts.
Others [26] describe a method of specifying and verifying TM algorithms. They
specify some transactional algorithms in terms of I/O automata [29] and this
choice of language enables them to fully verify those specifications in PVS. With
these works, we share the spirit of a layered-approach to contextual refinement.
However, we are instead working on the context of transactional objects. Ziv
et al. [45] describe how to compose transactions with other kinds of concurrency
control such as two-phase locking and two-phase commit.

10 Conclusions and Future Work

We have described a model for vertical composition of transactional objects
that is semantically simple and yet expressive and amenable to implementa-
tion flexibility. In our model, abstract-level operations are composed from con-
stituent base operations, accounting for conflict and ensuring availability of in-
verses. These transactional implementations are put in the context of an en-
vironment that includes a novel deadlock-mitigating contention manager that
ensures progress. Our model is the first proof of contextual refinement and ver-
tical composition for transactional objects. We believe that reversible atomic
objects provide a feasible avenue toward a broader availability of composable
transactional objects.

We believe that this model will form the basis of new strategies for building
complex high-performance software in a clean, modular manner. To this end, we
plan to investigate algorithms and for the various components of this framework,
for example, automating the translation from user-level syntax to pessimistic and
optimistic implementations. We will also develop implementations that can be
used in realistic settings, where a performance evaluation can be made.

24

References

1. Alexander Spiegelman, Guy Golan-Gueta, I. K. Transactional data struc-
ture libraries. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’16) (2016).

2. Amit, D., Rinetzky, N., Reps, T. W., Sagiv, M., and Yahav, E. Compari-
son under abstraction for verifying linearizability. In Computer Aided Verification,
19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Pro-
ceedings (2007), pp. 477–490.

3. Attiya, H., Gotsman, A., Hans, S., and Rinetzky, N. A programming lan-
guage perspective on transactional memory consistency. In Proceedings of the 2013
ACM symposium on Principles of distributed computing (2013), ACM, pp. 309–
318.

4. Attiya, H., Gotsman, A., Hans, S., and Rinetzky, N. Safety of live trans-
actions in transactional memory: TMS is necessary and sufficient. In Distributed
Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, Octo-
ber 12-15, 2014. Proceedings (2014), F. Kuhn, Ed., vol. 8784 of Lecture Notes in
Computer Science, Springer, pp. 376–390.

5. Bansal, K., Koskinen, E., and Tripp, O. Commutativity condition refinement.
In EC2 (2015).

6. Chen, H., Wu, X. N., Shao, Z., Lockerman, J., and Gu, R. Toward compo-
sitional verification of interruptible os kernels and device drivers. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (2016), ACM, pp. 431–447.

7. Cherem, S., Chilimbi, T. M., and Gulwani, S. Inferring locks for atomic sec-
tions. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI’08) (2008), pp. 304–315.

8. Crain, T., Imbs, D., and Raynal, M. Towards a universal construction for
transaction-based multiprocess programs. In International Conference on Dis-
tributed Computing and Networking (2012), Springer, pp. 61–75.

9. Dice, D., Shalev, O., and Shavit, N. Transactional Locking II. In Proceed-
ings of the 20th International Symposium on Distributed Computing (DISC’06)
(September 2006).

10. Dimitrov, D., Raychev, V., Vechev, M., and Koskinen, E. Commutativity
race detection. In Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’14), Edinburgh, UK (2014).

11. Felber, P., Fetzer, C., and Riegel, T. Dynamic performance tuning of
word-based software transactional memory. In Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’08) (2008), pp. 237–246.

12. Filipović, I., OHearn, P., Rinetzky, N., and Yang, H. Abstraction for con-
current objects. Theoretical Computer Science 411, 51 (2010), 4379–4398.

13. Gehr, T., Dimitrov, D., and Vechev, M. Learning commutativity speci-
fications. In International Conference on Computer Aided Verification (2015),
Springer, pp. 307–323.

14. Golan-Gueta, G., Ramalingam, G., Sagiv, M., and Yahav, E. Automatic
scalable atomicity via semantic locking. In ACM SIGPLAN Notices (2015), vol. 50,
ACM, pp. 31–41.

15. Gotsman, A., and Yang, H. Linearizability with ownership transfer. In CON-
CUR (2012).

16. Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjöberg, V., and Costanzo,
D. Certikos: An extensible architecture for building certified concurrent os kernels.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16) (2016).

25

17. Guerraoui, R., and Kapalka, M. On the correctness of transactional memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP’08) (2008), ACM, pp. 175–184.

18. Herlihy, M. Wait-free synchronization. ACM Trans. on Programming Languages
and Systems (TOPLAS) 13, 1 (1991), 124–149.

19. Herlihy, M., and Koskinen, E. Transactional boosting: A methodology for
highly concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’08)
(2008).

20. Herlihy, M. P., and Wing, J. M. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS) 12, 3 (1990), 463–492.

21. Herman, N., Inala, J. P., Huang, Y., Tsai, L., Kohler, E., Liskov, B., and
Shrira, L. Type-aware transactions for faster concurrent code. In Proceedings of
the Eleventh European Conference on Computer Systems, EuroSys 2016, London,
United Kingdom, April 18-21, 2016 (2016), C. Cadar, P. Pietzuch, K. Keeton, and
R. Rodrigues, Eds., ACM, pp. 31:1–31:16.

22. Koskinen, E., and Herlihy, M. Checkpoints and continuations instead of nested
transactions. In Proceedings of the 20th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA’08) (2008), pp. 160–168.

23. Koskinen, E., and Herlihy, M. Dreadlocks: efficient deadlock detection. In
Proceedings of the twentieth annual symposium on Parallelism in algorithms and
architectures (SPAA’08) (New York, NY, USA, 2008), ACM, pp. 297–303.

24. Koskinen, E., and Parkinson, M. J. The push/pull model of transactions. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, Portland, OR, USA, June 15-17, 2015 (2015), D. Grove
and S. Blackburn, Eds., ACM, pp. 186–195.

25. Koskinen, E., Parkinson, M. J., and Herlihy, M. Coarse-grained transactions.
In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’10) (2010), ACM, pp. 19–30.

26. Lesani, M., Luchangco, V., and Moir, M. A framework for formally verifying
software transactional memory algorithms. In Proceedings of the 23rd International
Conference on Concurrency Theory (CONCUR’12) (2012), vol. 7454, pp. 516–530.

27. Liang, H., Hoffmann, J., Feng, X., and Shao, Z. Characterizing progress
properties of concurrent objects via contextual refinements. In CONCUR (2013),
pp. 227–241.

28. Lipton, R. J. Reduction: a method of proving properties of parallel programs.
Commun. ACM 18, 12 (1975), 717–721.

29. Lynch, N. A., and Tuttle, M. R. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC’87) (1987), pp. 137–151.

30. Maldonado, W., Marlier, P., Felber, P., Suissa, A., Hendler, D., Fe-
dorova, A., Lawall, J. L., and Muller, G. Scheduling support for transac-
tional memory contention management. In ACM Sigplan Notices, vol. 45, pp. 79–
90.

31. Matveev, A., and Shavit, N. Towards a fully pessimistic STM model. In Pro-
ceedings of the 2012 Workshop on Transactional Memory (TRANSACT12) (2012).

32. Moravan, M. J., Bobba, J., Moore, K. E., Yen, L., Hill, M. D., Liblit, B.,
Swift, M. M., and Wood, D. A. Supporting nested transactional memory in
logTM. SIGOPS Operating Systems Review 40, 5 (2006), 359–370.

33. Moss, J. E. B. Open nested transactions: Semantics and support. In Workshop
on Memory Performance Issues (2006), vol. 28.

34. Moss, J. E. B., Griffeth, N. D., and Graham, M. H. Abstraction in recovery
management. In ACM SIGMOD Record (1986), vol. 15, ACM, pp. 72–83.

26

35. Ni, Y., Menon, V. S., Adl-Tabatabai, A.-R., Hosking, A. L., Hudson, R. L.,
Moss, J. E. B., Saha, B., and Shpeisman, T. Open nesting in software trans-
actional memory. In Proceedings of the 12th ACM SIGPLAN symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP’07) (2007), pp. 68–78.

36. O’Hearn, P. W., Rinetzky, N., Vechev, M. T., Yahav, E., and Yorsh,
G. Verifying linearizability with hindsight. In Proceedings of the 29th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich,
Switzerland, July 25-28, 2010 (2010), pp. 85–94.

37. Pedone, F., Guerraoui, R., and Schiper, A. The database state machine
approach. Distributed and Parallel Databases 14, 1 (2003), 71–98.

38. Ramadan, H. E., Roy, I., Herlihy, M., and Witchel, E. Committing conflict-
ing transactions in an stm. In Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’09) (2009), pp. 163–
172.

39. Saha, B., Adl-Tabatabai, A.-R., Hudson, R. L., Minh, C. C., and
Hertzberg, B. McRT-STM: a high performance software transactional memory
system for a multi-core runtime. In Proceedings of the 11th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP’06) (2006),
pp. 187–197.

40. Scherer III, W. N., and Scott, M. L. Contention management in dynamic
software transactional memory. In PODC Workshop on Concurrency and Syn-
chronization in Java programs (2004), pp. 70–79.

41. Scherer III, W. N., and Scott, M. L. Advanced contention management for
dynamic software transactional memory. In Proceedings of the twenty-fourth annual
ACM symposium on Principles of distributed computing (2005), ACM, pp. 240–
248.

42. Spear, M. F., Dalessandro, L., Marathe, V. J., and Scott, M. L. A com-
prehensive strategy for contention management in software transactional memory.
In ACM Sigplan Notices (2009), vol. 44, ACM, pp. 141–150.

43. Vafeiadis, V. Modular fine-grained concurrency verification. PhD thesis, Univer-
sity of Cambridge, 2008.

44. Vafeiadis, V., Herlihy, M., Hoare, T., and Shapiro, M. Proving correctness
of highly-concurrent linearisable objects. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP 2006,
New York, New York, USA, March 29-31, 2006 (2006), pp. 129–136.

45. Ziv, O., Aiken, A., Golan-Gueta, G., Ramalingam, G., and Sagiv, M. Com-
posing concurrency control. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015 (2015), pp. 240–249.

27

A Appendix

Proofs for Section 6

A log is inverse-free, if it contains no event that is an inverse of another event in
the log. A log ℓ is pτ, aq-free, if it contains events neither of the form pτ, aq nor of
the form pτ, a´1q. Given a log ℓ P L, the function kipℓq is defined to be such that
kipℓq “ ℓ when ℓ is inverse-free and kipℓ1 ¨ pτ, aq ¨ ℓ2 ¨ pτ, a´1q ¨ ℓ3q “ kipℓ1 ¨ ℓ2 ¨ ℓ3q
when ℓ2 is pτ, aq-free.

A thread τ is committed in a log ℓ if ℓ “ ℓ1 ¨ pτ,CmtRet q ¨ ℓ2 for some logs
ℓ1, ℓ2 where ℓ2 contains no pτ, Ivk q event and it is uncommitted if not. A log
ℓ is uncommitted-ordered if there are no thread identifiers τ, τ 1 such that τ is
committed in ℓ, τ 1 is uncommitted in ℓ and ℓ “ ℓ1 ¨ pτ 1, e1q ¨ ℓ2 ¨ pτ, eq ¨ ℓ3 for logs
ℓ1, ℓ2, ℓ3. Finally, a log ℓ is thread-method-ordered, if it is uncommitted-ordered
and it is a sequence of abstract operation sequences and base operations. In
other words, ℓ is equal to ℓ1 ¨ ¨ ¨ ℓn, where for each i ď n, there exists τi such that
ℓ1 “ pτ, aq or aosτipℓi, O.fq, for some O.f .

Given a log ℓ, we say that ℓ1¨pτ, IvkO.fpxqq is invoked before ℓ2¨pτ, IvkQ.gpxqq
in ℓ, if ℓ “ ℓ1 ¨pτ, Ivk O.fpxqq¨ℓ11 ¨pτ, Ivk Q.gpxqq¨ℓ3 and ℓ2 “ ℓ1 ¨pτ, Ivk O.fpxqq¨ℓ11.
Furthermore, given a log ℓ, we say that an event pτ, eq belongs to ℓ1¨pτ, IvkO.fpxqq
if ℓ “ ℓ1 ¨ pτ, Ivk O.fpxqq ¨ ℓ2 ¨ pτ, eq ¨ ℓ3 and ℓ2 does not contain an event
pτ,CmtRet O.fpxqq. Finally, a log segment ℓ1 in a log ℓ should be before an-
other log segment ℓ2 in that log, if the constituent events of ℓ1 belong to
ℓ1 ¨ pτ, Ivk O.fpxqq, the constituent events of ℓ2 belong to ℓ2 ¨ pτ 1, Ivk Q.gpxqq
and ℓ1 ¨ pτ, Ivk O.fpxqq is invoked before ℓ2 ¨ pτ, Ivk Q.gpxqq.

The function ropℓq is defined to be such that ropℓq “ ℓ when ℓ is thread-
method-ordered and ropℓ1 ¨ ℓ2 ¨ ℓ3 ¨ ℓ4q “ ropℓ1 ¨ ℓ3 ¨ ℓ2 ¨ ℓ4q when ℓ3 should be
before ℓ2 in ℓ.

Given a committed-ordered log ℓ “ ℓ1 ¨ ℓ2, where ℓ1 comprises all the com-
mitted operations and ℓ2 comprises all the uncommitted ones, we define trpℓq to
be equal to ℓ1.

Lemma 1. For all ℓ, ℓ1, ℓ1 ďobs ℓ ñ ℓ1 ďyobs ℓ.

Proof. Suppose that ℓ and ℓ1 are two logs such that ℓ ďobs ℓ
1. Therefore, allowedpℓq ñ

allowedpℓ1q and by definition of {allowed, it holds that {allowedpℓq ñ {allowedpℓ1q.
Furthermore, we know that for any event pτ, eq, ℓ ¨ pτ, eq ďobs ℓ1 ¨ pτ, eq. Conse-
quently, for any log ℓ1 we have that ℓ ¨ ℓ1 ďobs ℓ

1 ¨ ℓ1.

We want to show that {allowedpℓq ñ {allowedpℓ1q and that for any log ℓ1, there
exists log ℓ2, such that ℓ ¨ ℓ1 ďyobs ℓ1 ¨ ℓ2. In particular, for a given log ℓ1, we let
ℓ2 “ ℓ1 and we instead show that ℓ ¨ ℓ1 ďyobs ℓ1 ¨ ℓ1. The latter follows from the
fact that ℓ ¨ ℓ1 ďobs ℓ

1 ¨ ℓ1 and therefore ℓ ďyobs ℓ
1.

Lemma 2. For all well-formed logs ℓ, ℓ ďobs kipℓq.

Proof. Let ℓ be a well-formed log. We proceed by induction on the number n of
inverses in ℓ. For the base case, suppose that there are no inverses. By definition,

28

kipℓq “ ℓ, and by reflexivity ℓ ďobs kipℓq. Suppose then that the statement is
correct for all logs with n inverses, where n ă K for some K P N, and consider
a log ℓ with K inverses. Then there exist a basic operation a, a thread τ and
logs ℓ1, ℓ2, ℓ3, such that ℓ2 is pτ, aq-free and ℓ “ ℓ1 ¨ pτ, aq ¨ ℓ2 ¨ pτ, a´1q ¨ ℓ3. By
definition, kipℓq “ kipℓ1 ¨ ℓ2 ¨ ℓ3q, and by the inductive hypothesis, ℓ1 ¨ ℓ2 ¨ ℓ3 ďobs

kipℓ1 ¨ ℓ2 ¨ ℓ3q. It remains to be shown that ℓ ďobs ℓ1 ¨ ℓ2 ¨ ℓ3, or in other words,
ℓ1 ¨ pτ, aq ¨ ℓ2 ¨ pτ, a´1q ¨ ℓ3 ďobs ℓ1 ¨ ℓ2 ¨ ℓ3.

We show this by induction on the size of the length of ℓ2. For the base case,
suppose that |ℓ2| “ 0. Then ℓ1 ¨ ℓ2 ¨ ℓ3 “ ℓ1 ¨ ℓ3 and ℓ1 ¨ pτ, aq ¨ pτ, a´1q ¨ ℓ3 ďobs

ℓ1 ¨ ℓ3. Suppose then that the statement holds for all m ă M for some M P N,
and consider the case where |ℓ2| “ M . Then ℓ2 “ ℓ12 ¨ pτ 1, eq. Since ℓ is well-

formed, it follows that pτ 1, eq
ℓ2

Ÿ pτ, a´1q, for ℓ2 “ ℓ1 ¨ pτ, aq ¨ ℓ12, and therefore,
ℓ1 ¨ pτ, aq ¨ ℓ12 ¨ pτ 1, eq ¨ pτ, a´1q ďobs ℓ1 ¨ pτ, aq ¨ ℓ12 ¨ pτ, a´1q ¨ pτ 1, eq. Hence,

ℓ1 ¨ pτ, aq ¨ ℓ12 ¨ pτ 1, eq ¨ pτ, a´1q ¨ ℓ3 ďobs ℓ1 ¨ pτ, aq ¨ ℓ12 ¨ pτ, a´1q ¨ pτ 1, eq ¨ ℓ3.

Then |ℓ12| ă M and by the inductive hypothesis,

ℓ1 ¨ pτ, aq ¨ ℓ12 ¨ pτ, a´1q ¨ pτ 1, eq ¨ ℓ3 ďobs ℓ1 ¨ ℓ2 ¨ ℓ3,

and hence, by transitivity of ďobs,

ℓ1 ¨ pτ, aq ¨ ℓ12 ¨ pτ 1, eq ¨ pτ, a´1q ¨ ℓ3 ďobs ℓ1 ¨ ℓ2 ¨ ℓ3,

where the left hand side is equal to ℓ.

Lemma 3. For all well-formed ℓ, ℓ ďobs ropℓq.

Proof. Let ℓ be a well-formed log. We proceed by induction on the number n of
pairs of events ppτ, eq, pτ 1, e1qq where pτ, eq should be before pτ 1, e1q in ℓ and where
pτ 1, e1q appears before pτ, eq in ℓ. For the base case, suppose that n “ 0. Then
ℓ is thread-method-ordered and therefore, ropℓq “ ℓ. By reflexivity, ropℓq ďobs ℓ.
Suppose then that the statement holds for all n ă N , for some N P N, and
consider the case where the number of events satisfying the above condition is
N . Then ℓ “ ℓ1 ¨ pτ 1, e1q ¨ ℓ2 ¨ pτ, eq ¨ ℓ3, where pτ, eq should be before pτ 1, e1q in
ℓ. It follows that ropℓq “ ropℓ1 ¨ pτ 1, e1q ¨ ℓ2 ¨ pτ, eq ¨ ℓ3q and by definition, the
latter is equal to ropℓ1 ¨ pτ, eq ¨ pτ 1, e1q ¨ ℓ2 ¨ ℓ3q. By the inductive hypothesis,
ℓ1 ¨ pτ, eq ¨ pτ 1, e1q ¨ ℓ2 ¨ ℓ3 ďobs ropℓ1 ¨ pτ, eq ¨ pτ 1, e1q ¨ ℓ2 ¨ ℓ3q. It remains to be shown
that

ℓ ďobs ℓ1 ¨ pτ, eq ¨ pτ 1, e1q ¨ ℓ2 ¨ ℓ3.

Notice, that since ℓ is well-formed, it must be the case that pτ, eq
ℓ1
Ÿ pτ2, aq for

all pτ, aq in pτ 1, eq ¨ ℓ2. By induction over the length of pτ 1, eq ¨ ℓ2, similarly to the
proof of Lemma 2, it follows that ℓ1 ¨ pτ, eq ¨ pτ 1, e1q ¨ ℓ2 ďobs ℓ1 ¨ pτ 1, e1q ¨ pτ, eq ¨ ℓ2,
as required.

Lemma 4. For any log ℓ that is inverse-free and committed-ordered, ℓ ďyobs
trpℓq.

29

Proof. By reflexivity of ďyobs, we know that for all logs ℓ, ℓ ďyobs ℓ. Let ℓ “

trpℓq ¨ℓ1 and let ℓ1 be any log. By definition of the predicate {allowed, it holds that
{allowedpℓq ñ {allowedptrpℓqq. Let ℓ2 “ ℓ1 ¨ ℓ1. Then ℓ ¨ ℓ1 “ trpℓq ¨ ℓ1 ¨ ℓ1 “ trpℓq ¨ ℓ2
and therefore, ℓ ¨ ℓ1 ďyobs trpℓq ¨ ℓ2, as required.

Lemma 5. For all ℓ, ℓ1, ℓ2,

if ℓ ďyobs ℓ
1 and ℓ1 ďyobs ℓ

2 then ℓ ďyobs ℓ
2.

Proof. Suppose that ℓ ďyobs ℓ
1 and ℓ1 ďyobs ℓ

2. Then allowedpℓq implies allowedpℓ1q
and allowedpℓ1q implies allowedpℓ2q. It follows that allowedpℓq ñ allowedpℓ2q. We
know that for all ℓ1, there exists ℓ2 such that ℓ ¨ ℓ1 ďyobs ℓ

1 ¨ ℓ2. Furthermore, we
know that given ℓ2, there exists ℓ3 such that ℓ1 ¨ ℓ2 ďyobs ℓ

2 ¨ ℓ3. Therefore, for all
ℓ1, there exists ℓ3 such that ℓ ¨ ℓ1 ďyobs ℓ

1 ¨ ℓ3, as required.

Lemma 6. For all programs P and EI P Einterleaved there exists EA P Eatomic

such that
trpropkiplogpΠpP, EIqqqq ďobs logpΠApP, EAqq.

Proof. We want to construct a valid EA that simply schedules the appropriate
threads. Let P be any program, and let EI be any interleaved environment.
Let ℓ be equal to logpΠpP, EIqq and ℓnorm be trpropkipℓqqq. By definition of the
transformations trp.q, rop.q and kip.q, it follows that trpropkipℓqqq is thread-method-
ordered, without inverses and all operations that appear in it are committed.
We then define EA to be simply the environment that schedules the threads and
methods according to the order they appear in this normalized version of the
log ℓ.

Lemma 7. For all objects O, and environments EI in Einterleaved, there exists EA
in Eatomic such that for all client programs P , ΠpP ‘CO, EAq “ ΠpP ‘SO, EIq.
Similarly, for all EA in Eatomic, there exists EI in Einterleaved, such that for all
P , ΠpP ‘ CO, EAq “ ΠpP ‘ SO, EIq.

Proof. By definition of Einterleaved and Eatomic.

Theorem 1. For any object O we have

rrCOssinterleaved Ď rrSOssinterleaved

Proof. We want to show that for every client program P and EI P Einterleaved

there exists E2I P Einterleaved such that ΠpP ‘ CO, EIq ďyobs ΠpP ‘ SO, E
2
I q.

Notice that by Lemma 7, it suffices to show that for all P and EI P Einterleaved,
there exists EA P Eatomic, such that ΠpP ‘ CO, EIq ďyobs ΠpP ‘ CO, EAq. Fix
a program P and an interleaved environment EI , and let EA be the atomic
environment obtained by Lemma 6. For readability, let ℓI be logpΠpP ‘CO, EIqq
and let ℓA be ΠpP ‘CO, EAq. We have that trpropkipℓIqqq ďobs ℓA, and by Lemma
1, it holds that trpropkipℓIqqq ďyobs ℓA.

30

Since ℓI is assumed to be a well-formed log, by Lemmas 2 and 3, ℓI ďobs

ropkipℓIqq and by Lemma 1, ℓI ďyobs ropkipℓIqq. Furthermore, by Lemma 4,
ropkipℓIqq ďyobs trpropkipℓIqqq, and thus, ℓI ďyobs trpropkipℓIqqq, by transitivity of
ďyobs (Lemma 5). Finally, since trpropkipℓIqqq ďyobs ℓA and ℓI ďyobs trpropkipℓIqqq,
again by Lemma 5 we obtain ℓI ďyobs ℓA, as required.

Lemma 8. For any object specification SO, program P , and environment E P
Einterleaved it holds that the base observations of ΠpP, Eq are equal to the abstract
observations of ΠpP ‘ SO, Eq.

Theorem 2. Let O and Q be two objects. Then

rrCO ‘ CQssinterleaved Ď rrSO ‘ SQssinterleaved.

Proof. From Theorem 1, we know that (a) rrCOssinterleaved Ď rrSOssinterleaved and
(b) rrCQssinterleaved Ď rrSQssinterleaved.

We have to show that for all P and all E , there exists E 1 such that ΠpP ‘
CO ‘ CQ, Eq ďyobs ΠpP ‘ SO ‘ SQ, E

1q. Fix an environment E and a client
program P . Then by (b), there exists E1 such that, ΠpP ‘ CO ‘ CQ, Eq ďyobs
ΠpP ‘ CO ‘ SQ, E1q. By Lemma 8, there exists E2 such that ΠpP ‘ CO ‘
SQ, E1q ďyobs ΠpP ‘CO, E2q. By (a), there exists E3 such that ΠpP ‘CO, E2q ďyobs
ΠpP ‘ SO, E3q. Finally, by applying Lemma 8 again, there exists E 1 such that
ΠpP ‘ SO, E3q ďyobs ΠpP ‘ SO ‘ SQ, E

1q as needed.

31

B Pseudo-code for the Universal Construction

The transactional universal construction is a theoretical result and we don’t
expect it to be used as the implementation strategy in real systems. Nonethe-
less, concretizing the algorithm is helpful. To this end, Figure 6 provides pseudo
code UniversalTransactionalObject class. Here we have distinct API methods for
operations (try op) versus committing (try commit), whereas our summary in
Section 8.2 has them merged. Our implementation assumes the Thread ob-
ject contains a local copy of a sequential implementation of the shared ob-
ject in thread.local and a reference to the last log entry seen by the thread
in thread.lastSeen. Line 4 defines try op, which takes a transaction identifier and
a method invocation. After constructing a new entry (Line 6), it starts iterating
over the log from thread.lastSeen until it reaches the end (Lines 10-17). This loop
checks whether the transaction’s new operation is permitted on the log. First,
it checks whether the thread’s new entry conflicts with one already on the log,
according to RAO specification tx.isConflict. Second, it checks for any inversions
of the current transaction by the contention manager. Because inverses are ap-
plied in reverse order, the loop continues looking for inverses until the end of
the log, saving the last one found. An Abort or Conflict causes the loop to break
early (Line 19).

When there is no conflict or abort, the thread is finally free to compete for
the end of the log on (Line 20). If the thread loses, the entire process begins again
at Line 8. If the thread wins, however, the next node returned by decideNext is
the thread’s own new entry, and the loop terminates. Lastly, the thread-local
copy of the sequential version of the object is created by applying the operations
from the log, as long as they are from committed operations and the current
transaction.

With try op defined, it is straightforward to append begin and commit events.
The begin function (Line 33) creates a new transaction identifier for the thread
and calls try op to append the begin message 2. The call cannot result in a
Conflict or Abort, because there are no operations yet from the transaction.
Similarly, try commit (Line 38) uses try op to append a commit event. In this
case, however, a threads operation may have been inverted before the thread
appends the commit, saving the response from try op. If response is Success, the
commit is recorded in a global summary for use in updating of the thread-local
copy of the object. The summary is provided for convenience, and can always
be recreated by traversing the log.

2 For simplicity, begin and commit events are also represented by the Invoc type.

32

1 public class UniversalTransactionalObject {
2 private Transaction[] committed;
3 private Node logHead;
4 public Result try op(Transaction tx, Invoc invoc) {
5 Thread thread = tx.thread;
6 Node entry = new Node(th, tx, invoc);
7 Node current = thread.lastSeen;
8 do {
9 Result result = null;

10 while (current.next != null) {
11 current = current.next;
12 if (tx.isConflict(entry, current)) {
13 result = new Conflict();
14 break;
15 } else if (tx.isInverse(current))
16 abort = current;
17 }
18 if (abort != null) result = new Abort(abort)
19 if (result != null) break;
20 Node next = current.decideNext(entry);
21 if (next == entry) result = new Success();
22 } while (result == null);
23 thread.local = new SeqObject();
24 current = logHead;
25 while (current != null) {
26 if (committed[current.tx] or current.tx == tx)
27 thread.local.apply(current.invoc);
28 thread.lastSeen = current;
29 current = current.next;
30 }
31 return result;
32 }
33 public Transaction begin(Thread thread, ObjectID obj) {
34 Transaction tx = new Transaction(thread, obj);
35 try op(tx, begin);
36 return tx;
37 }
38 public Result try commit(Transaction tx) {
39 Result result = try op(tx, commit);
40 if (result is Success) {
41 committed[tx] = true;
42 }
43 return result;
44 }
45 }

Fig. 6. The universal construction for transactional objects.

33

C Example of a nested transaction

Unlike nested transactions, reversible atomic objects require that transactions be
aligned with method boundaries. Also, reversible atomic objects construct their
own inverses (and we show that they are typically easy to construct). Finally,
reversible atomic objects may, at each level, use different implementation styles
(pessimistic-vs-optimistic). To the best of our knowledge, this is not possible
with nested transactions. The following is an example of a nested transactions
that aren’t reversible atomic objects.

1 FileSystem.moveFile(p1, p2) {
2 atomic {
3 v = ht.get(p1)
4 ht.put(p2, v)
5 ht.remove(p1)
6 }
7 directory.move(p1, p2);
8 }
9

10 Directory.move(p1, p2) {
11 atomic {
12 all paths.add(p2)
13 all paths.remove(p1)
14 atomic {
15 Node node = tree.find(p2.directory)
16 node.addChild(p2.filename)
17 }
18 atomic {
19 Node node = tree.find(p1.directory)
20 node.removeChild(p1.filename)
21 }
22 }
23 }

Here there are two class definitions and a vertical OO hierarchy. Transactions
are not directly aligned with object methods. Conflict/commutativity/inverses
are used in an ad hoc manner (not shown here).

34

	A Theory of Vertically Composable Transactional Objects

