CS615 - Aspects of System Administration

Networking II

Department of Computer Science
Stevens Institute of Technology
Jan Schaumann
jschauma@stevens.edu
http://www.cs.stevens.edu/~jschauma/615A/
Get your instruments and play along!

Start a FreeBSD instance, then log in on it.

ami-d0b520b8 --instance-type t1.micro

ssh ec2-user@<instance-name>
A simple example

$ telnet www.google.com 80
A simple example

$ telnet www.google.com 80
Trying 172.217.15.68...
Connected to www.google.com.
Escape character is '^['.
HEAD / HTTP/1.0
A simple example

$ telnet www.google.com 80
Trying 172.217.15.68...
Connected to www.google.com.
Escape character is '^[].'
HEAD / HTTP/1.0

HTTP/1.0 200 OK
Date: Sun, 25 Feb 2018 18:18:45 GMT
Content-Type: text/html; charset=ISO-8859-1
Server: gws
[...]
A simple example

What exactly happens?
A simple example

What exactly happens?

- local host connects to remote host
- sends command
- receives data
A simple example

How exactly do we connect to the remote host?

- look up hostname
- open connection to IP address
A simple example

How exactly do we look up a hostname?
A simple example

$ ktrace -i telnet www.google.com 80
Trying 172.217.15.68...
Connected to www.google.com.
Escape character is '^]'.
GET / HTTP/1.0

[...]
$ kdump >trace
...open a few files...

```plaintext
735 ktrace RET execve -1 errno 2 No such file or directory
735 ktrace CALL execve(0xbfbd7e0,0xbfbd600,0xbfbded0)
735 ktrace NAMI "/usr/bin/telnet"
735 ktrace NAMI "/libexec/ld-elf.so.1"
735 telnet RET execve 0

735 telnet CALL open(0x285192e8,0x100000<0_CLOEXEC>,<unused>0x1b6)
735 telnet NAMI "/etc/nsswitch.conf"
735 telnet RET open 3

735 telnet CALL open(0x28517f5,0x100000<0_CLOEXEC>,<unused>0x1b6)
735 telnet NAMI "/etc/hosts"
735 telnet RET open 3

735 telnet CALL open(0x28516f79,0x100000<0_CLOEXEC>,<unused>0x1b6)
735 telnet NAMI "/etc/resolv.conf"
735 telnet RET open 3

735 telnet CALL read(0x3,0x28c31000,0x8000)
735 telnet GIO fd 3 read 70 bytes
   "# Generated by resolvconf
   search ec2.internal
   nameserver 172.16.0.23"
```
... query a DNS server ...

735 telnet CALL socket(PF_INET,SOCK_CLOEXEC|SOCK_DGRAM,IPPROTO_IP)
735 telnet RET socket 4
735 telnet CALL connect(0x4,0x28547e64,0x10)
735 telnet STRU struct sockaddr { AF_INET, 172.16.0.23:53 }
735 telnet RET connect 0
735 telnet CALL sendto(0x4,0x28c5f000,0x20,0,0,0)
735 telnet GIO fd 4 wrote 32 bytes
 0x0000 9a70 0100 0001 0000 0000 0377 7777 0667 6f6f 676c | .p...........www.googl|
 0x0016 6503 636f 6d00 001c 0001 c00c 001c 0001 0000 003c 0010 |e.com..............<..|
 0x002c 2607 f8b0 0004 0807 0000 0000 0000 2004

735 telnet CALL recvfrom(0x4,0x28c4f000,0x10000,0,0xbfbfd5d0,0xbfbfd5cc)
735 telnet GIO fd 4 read 60 bytes
 0x0000 d6c6 8180 0001 0001 0000 0000 0377 7777 0667 6f6f 676c |www.googl|
 0x0016 6503 636f 6d00 001c 0001 c00c 001c 0001 0000 003c 0010 |e.com..................|
 0x002c 2607 f8b0 0004 0807 0000 0000 0000 2004

[...]
A simple example

How exactly do we look up a hostname?

- look up various local files
- open a connection to a DNS server’s IP
- ask DNS server to resolve hostname
- get back IP

And then?
...communicate with the remote host...

735 telnet GIO fd 1 wrote 25 bytes
 "Trying 216.58.217.132..."

735 telnet RET write 25/0x19
735 telnet CALL socket(PF_INET,SOCK_STREAM,IPPROTO_TCP)
735 telnet CALL connect(0x3,0x28c0f0f0,0x10)
735 telnet STRU struct sockaddr { AF_INET, 216.58.217.132:80 }

[...]

918 telnet GIO fd 0 read 16 bytes
 "HEAD / HTTP/1.0"

918 telnet RET read 16/0x10
918 telnet CALL select(0x4,0x28c0d1b8,0x28c0d1c0,0x28c0d1c8,0x80677b8)
918 telnet RET select 1
918 telnet CALL sendto(0x3,0x8068048,0x11,0,0,0)
918 telnet GIO fd 3 wrote 17 bytes
 "HEAD / HTTP/1.0\r"

[...]

918 telnet RET select 1
918 telnet CALL recvfrom(0x3,0x8068870,0x400,0,0,0)
918 telnet GIO fd 3 read 665 bytes
 "HTTP/1.0 200 OK\r
 Date: Sun, 25 Feb 2018 18:55:15 GMT\r

Ok, so how does this work?

- determine which nameserver to query
- ask who has a route to the nameserver
- open socket to well defined port on remote IP
- send queries
- open socket to requested port on remote IP
Let's collect some data...

```bash
laptop$ ssh ec2-user@<instance-name>
$ su
# script commands.out
# ifconfig -a
# route -n get default
# cat /etc/resolv.conf
# tcpdump -w tcpdump.out port not 22 >/dev/null &
# arp -d -a
# ping -n -c 3 8.8.8.8
# ktrace -i telnet www.google.com 80
HEAD / HTTP/1.0
# kill %1
# kdump > kdump.out
# exit
# exit
$ exit
laptop$ scp ec2-user@<instance-name>:*out /tmp/
```
A simple example

Finding the next hop:

```
$ tcpdump -t -n -r /tmp/tcpdump.out arp
reading from file tcpdump.out, link-type EN10MB (Ethernet)
ARP, Request who-has 10.234.105.193 tell 10.234.105.225, length 28
ARP, Reply 10.234.105.193 is-at fe:ff:ff:ff:ff:ff, length 28
ARP, Request who-has 10.234.105.225 tell 10.234.105.193, length 28
ARP, Reply 10.234.105.225 is-at 22:00:0a:ea:69:e1, length 28
```
A simple example

Performing the DNS query:

```
$ tcpdump -t -n -r tcpdump.out udp port 53
reading from file tcpdump.out, link-type EN10MB (Ethernet)
IP 172.16.0.23.53 > 10.234.105.225.12637: 32409 1/0/0 A 172.217.12.228 (48)
IP 172.16.0.23.53 > 10.234.105.225.33347: 49414 1/0/0 AAAA 2607:f8b0:4004:807::2004 (60)
```
A simple example

Establishing the connection to the server:

```
$ tcpdump -t -n -r tcpdump.out tcp port 80
IP 10.234.105.225.50194 > 172.217.15.68.80: Flags [S],
    seq 1054601677, win 65535, options [..], length 0
IP 172.217.15.68.80 > 10.234.105.225.50194: Flags [S.],
    seq 230054466, ack 1054601678, win 42408, options [..], length 0
IP 10.234.105.225.50194 > 172.217.15.68.80: Flags [..],
    ack 1, win 1026, options [..], length 0
```
A simple example

Sending the HTTP request:

IP 10.234.105.225.50194 > 172.217.15.68.80: Flags [P.],
 seq 1:18, ack 1, win 1026, options [...], length 17
IP 172.217.15.68.80 > 10.234.105.225.50194: Flags [.],
 ack 18, win 166, options [...], length 0
IP 10.234.105.225.50194 > 172.217.15.68.80: Flags [P.],
 seq 18:20, ack 1, win 1026, options [...], length 2
IP 172.217.15.68.80 > 10.234.105.225.50194: Flags [.],
 ack 20, win 166, options [...], length 0
A simple example

Receiving the HTTP response:

IP 172.217.15.68.80 > 10.234.105.225.50194: Flags [P.],
 seq 1:666, ack 20, win 166, options [...], length 665
IP 10.234.105.225.50194 > 172.217.15.68.80: Flags [.] ,
 ack 667, win 1015, options [...], length 0
A simple example

Terminating the connection:

IP 172.217.15.68.80 > 10.234.105.225.50194: Flags [F.],
 seq 666, ack 20, win 166, options [...], length 0
IP 10.234.105.225.50194 > 172.217.15.68.80: Flags [F.],
 seq 20, ack 667, win 1026, options [...], length 0
IP 172.217.15.68.80 > 10.234.105.225.50194: Flags [.],
 ack 21, win 166, options [...], length 0
Notables from this simple example

“Simple” is, as usual, relative.
Notables from this simple example

“Simple” is, as usual, relative.

- host configuration assumed
- network architecture (internal or across the internet) not relevant (here)
- even simple examples cross multiple layers and protocols (HTTP, DNS; TCP, UDP, ARP)
- we haven’t even scratched the surface
TCP/IP Basics: Protocol Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Application Layer</td>
<td>End-User application programs</td>
</tr>
<tr>
<td>3. Transport Layer</td>
<td>Delivery of data to applications</td>
</tr>
<tr>
<td>2. Network Layer</td>
<td>Basic communication, addressing, and routing</td>
</tr>
<tr>
<td>1. Link Layer</td>
<td>Network Hardware and device drivers</td>
</tr>
<tr>
<td>Physical Layer</td>
<td>Cable or physical medium</td>
</tr>
</tbody>
</table>

Examples of protocols for each layer:

- **Simple Mail Transfer Protocol (RFC 821)**
 - Hypertext Transfer Protocol (RFC 2616)

- **Transmission Control Protocol (RFC 793; tcp(4))**
 - User Datagram Protocol (RFC 768; udp(4))

- **Internet Protocol (RFC 791; ip(4))**
 - Internet Control Message Protocol (RFC 792; icmp(4))

- **Address Resolution Protocol (RFC 826; arp(4))**
TCP/IP Basics: Protocol Layers (OSI Model)

<table>
<thead>
<tr>
<th>OSI Model</th>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host layers</td>
<td>Data unit 7. Application</td>
<td>Network process to application</td>
</tr>
<tr>
<td></td>
<td>6. Presentation</td>
<td>Data representation, encryption and decryption, convert machine dependent data to machine independent data</td>
</tr>
<tr>
<td></td>
<td>5. Session</td>
<td>Interhost communication, managing sessions between applications</td>
</tr>
<tr>
<td></td>
<td>Segments 4. Transport</td>
<td>End-to-end connections, reliability and flow control</td>
</tr>
<tr>
<td>Media layers</td>
<td>Packet/Datagram 3. Network</td>
<td>Path determination and logical addressing</td>
</tr>
<tr>
<td></td>
<td>Frame 2. Data link</td>
<td>Physical addressing</td>
</tr>
<tr>
<td></td>
<td>Bit 1. Physical</td>
<td>Media, signal and binary transmission</td>
</tr>
</tbody>
</table>
TCP/IP Basics: ARP

Ethernet Address Resolution Protocol

– or –

Converting Network Protocol Addresses to 48-bit Ethernet Address for Transmission on Ethernet Hardware

$ arp -a

falcon.srcit.stevens-tech.edu (155.246.89.89) at 00:07:e9:09:ca:10 [ether] on eth0
grohl.srcit.stevens-tech.edu (155.246.89.9) at 00:16:3e:cf:6b:5b [ether] on eth0
hoth.srcit.stevens-tech.edu (155.246.89.10) at 00:1e:68:8e:79:d8 [ether] on eth0
cinema.srcit.stevens-tech.edu (155.246.89.67) at 00:25:90:1e:05:51 [ether] on eth0
vlan16.cc.stevens-tech.edu (155.246.89.1) at 00:00:5e:00:01:02 [ether] on eth0
vader.srcit.stevens-tech.edu (155.246.89.5) at 00:23:8b:a9:dd:60 [ether] on eth0
nirvana.phy.stevens-tech.edu (155.246.89.33) at 00:1e:68:0f:99:a2 [ether] on eth0
TCP/IP Basics: ARP

who has 10.101.194.209?

10.101.194.209 is at 52:54:00:19:42:09
TCP/IP Basics: ARP

Ethernet Address Resolution Protocol
– or –
Converting Network Protocol Addresses to 48-bit Ethernet Address for Transmission on Ethernet Hardware

ARP, Request who-has 10.114.62.1 tell 10.114.63.209, length 28
ARP, Reply 10.114.62.1 is-at fe:ff:ff:ff:ff:ff, length 28
ARP, Request who-has 10.114.63.209 (ff:ff:ff:ff:ff:ff) tell 0.0.0.0, length 28
ARP, Reply 10.114.63.209 is-at 12:31:3d:04:30:23, length 28
ARP, Request who-has 10.114.63.209 (ff:ff:ff:ff:ff:ff) tell 0.0.0.0, length 28
ARP, Reply 10.114.63.209 is-at 12:31:3d:04:30:23, length 28
ARP, Request who-has 10.114.63.209 (ff:ff:ff:ff:ff:ff) tell 0.0.0.0, length 28
ARP, Reply 10.114.63.209 is-at 12:31:3d:04:30:23, length 28
TCP/IP Basics: ND

Neighbor Discovery Protocol

```
$ ndp -n -a
Neighbor                  Linklayer Address   Netif Expire       S Flags
fe80::21b:21ff:fe45:bf54%xennet0 00:1b:21:45:bf:54 xennet0 21m52s S R
fe80::21b:21ff:fe7a:7269%xennet0 00:1b:21:7a:72:69 xennet0 23h59m59s S R
fe80::e276:63ff:fe72:3900%xennet0 e0:76:63:72:39:00 xennet0 permanent R
fe80::1%lo0                             (incomplete) lo0 permanent R
$
```
TCP/IP Basics: ND

Neighbor Discovery Protocol

IP6 fe80::21b:21ff:fe7a:7269 > ff02::1:ff62:3400: ICMP6,
IP6 2001:470:30:84:e276:63ff:fe72:3900 > ff02::1:ff7a:7269: ICMP6,
neighbor solicitation, who has fe80::21b:21ff:fe7a:7269, length 32
TCP/IP Basics: ICMP

Internet Control Message Protocol

$ ping -c 3 www.yahoo.com
PING any-fp.wa1.b.yahoo.com (67.195.160.76): 56 data bytes
64 bytes from 67.195.160.76: icmp_seq=0 ttl=53 time=30.888 ms
64 bytes from 67.195.160.76: icmp_seq=1 ttl=53 time=23.193 ms
64 bytes from 67.195.160.76: icmp_seq=2 ttl=53 time=25.433 ms

----any-fp.wa1.b.yahoo.com PING Statistics----
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 23.193/26.505/30.888/3.958 ms
$
TCP/IP Basics: ICMP: Ping
TCP/IP Basics: ICMP

Internet Control Message Protocol

$ tcpdump -r tcpdump.out -n icmp
IP 10.234.84.220 > 207.237.69.79: ICMP echo request
IP 207.237.69.79 > 10.234.84.220: ICMP echo reply
IP 10.234.84.220 > 207.237.69.79: ICMP echo request
IP 207.237.69.79 > 10.234.84.220: ICMP echo reply
IP 10.234.84.220 > 207.237.69.79: ICMP echo request
IP 207.237.69.79 > 10.234.84.220: ICMP echo reply
TCP/IP Basics: ICMP6

Internet Control Message Protocol for IPv6

$ ping6 -c 3 www.netbsd.org
PING6(56=40+8+8 bytes) 2001:470:30:84:204:d7b0:0:1 -->
 2001:4f8:3:7:2e0:81ff:fe52:9a6b
16 bytes from 2001:4f8:3:7:2e0:81ff:fe52:9a6b, icmp_seq=0 hlim=57 time=74.316 ms
16 bytes from 2001:4f8:3:7:2e0:81ff:fe52:9a6b, icmp_seq=1 hlim=57 time=71.260 ms
16 bytes from 2001:4f8:3:7:2e0:81ff:fe52:9a6b, icmp_seq=2 hlim=57 time=71.321 ms

--- www.netbsd.org ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/std-dev = 71.260/72.299/74.316/1.747 ms
TCP/IP Basics: ICMP6

Internet Control Message Protocol for IPv6

IP6 2001:470:30:84:204:d7b0:0:1 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b: ICMP6, echo request, seq 0, length 16
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
 2001:470:30:84:204:d7b0:0:1: ICMP6, echo reply , seq 0, length 16
IP6 2001:470:30:84:204:d7b0:0:1 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b: ICMP6, echo request, seq 1, length 16
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
 2001:470:30:84:204:d7b0:0:1: ICMP6, echo reply , seq 1, length 16
IP6 2001:470:30:84:204:d7b0:0:1 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b: ICMP6, echo request, seq 2, length 16
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
 2001:470:30:84:204:d7b0:0:1: ICMP6, echo reply , seq 2, length 16
TCP/IP Basics: ICMP: Traceroute
TCP/IP Basics: ICMP: Traceroute

2. UDP port 33441, TTL = 2

Router

TTL = TTL - 1

Router 2

TTL = TTL - 1
if TTL == 0: TIME EXCEEDED

Router 3
TCP/IP Basics: ICMP: Traceroute
TCP/IP Basics: ICMP: Traceroute

4. UDP port 33441, TTL= 4

TTL = TTL - 1

TTL = TTL - 1

TTL = TTL - 1

Destination unreachable
TCP/IP Basics: ICMP

Internet Control Message Protocol

$ traceroute www.netbsd.org
traceroute to www.netbsd.org (204.152.190.12), 64 hops max, 40 byte packets
1 eth2-3a.core1.nav.nyc.access.net (166.84.0.1) 0.256 ms 0.165 ms 0.181 ms
2 l3v1.nyc.access.net (166.84.66.14) 1.570 ms 1.556 ms 1.437 ms
3 gige-g3-3.core1.nyc4.he.net (209.51.171.25) 4.963 ms 2.422 ms 1.457 ms
4 10gigabitethernet2-3.core1.ash1.he.net (72.52.92.86) 8.423 ms 8.769 ms 7.683 ms
5 10gigabitethernet1-2.core1.atl1.he.net (184.105.213.110) 21.898 ms 19.647 ms 19.838 ms
6 isc.gige-g2-1.core1.atl1.he.net (216.66.0.50) 77.465 ms 77.921 ms 80.519 ms
7 iana.r1.atl1.isc.org (199.6.12.1) 77.302 ms 78.230 ms 81.782 ms
8 int-0-5-0-1.r1.pao1.isc.org (149.20.65.37) 81.860 ms 83.780 ms 84.160 ms
9 int-0-0-1-0.r1.sql1.isc.org (149.20.65.10) 81.543 ms 80.193 ms 84.434 ms
10 www.netbsd.org (204.152.190.12) 81.986 ms 81.008 ms 82.604 ms
$
TCP/IP Basics: ICMP

Internet Control Message Protocol

IP (tos 0x0, ttl 1, id 44866, offset 0, flags [none], proto UDP (17), length 40)
 166.84.7.99.44865 > 149.20.53.86.33435: [udp sum ok] UDP, length 12
IP (tos 0xc0, ttl 64, id 48796, offset 0, flags [none], proto ICMP (1), length 68)
 166.84.0.1 > 166.84.7.99: ICMP time exceeded in-transit, length 48
IP (tos 0x0, ttl 2, id 44869, offset 0, flags [none], proto UDP (17), length 40)
 166.84.7.99.44865 > 149.20.53.86.33438: [udp sum ok] UDP, length 12
IP (tos 0x0, ttl 3, id 44872, offset 0, flags [none], proto UDP (17), length 40)
 166.84.7.99.44865 > 149.20.53.86.33441: [udp sum ok] UDP, length 12
IP (tos 0x0, ttl 4, id 44875, offset 0, flags [none], proto UDP (17), length 40)
 166.84.7.99.44865 > 149.20.53.86.33444: [udp sum ok] UDP, length 12
IP (tos 0x0, ttl 252, id 6760, offset 0, flags [none], proto ICMP (1), length 56)
 154.24.25.109 > 166.84.7.99: ICMP time exceeded in-transit, length 36
...
IP (tos 0x0, ttl 248, id 0, offset 0, flags [none], proto ICMP (1), length 56)
 149.20.53.86 > 166.84.7.99: ICMP 149.20.53.86 udp port 33482 unreachable, length
Internet Control Message Protocol for IPv6

$ traceroute6 www.netbsd.org
traceroute6 to www.netbsd.org (2001:4f8:3:7:2e0:81ff:fe52:9a6b) from
2001:470:30:84:204:d7b0:0:1, 64 hops max, 12 byte packets
1 router.vc.panix.com 0.271 ms 0.282 ms 0.155 ms
2 2001:470:30::a654:420e 5.459 ms 1.251 ms 1.073 ms
3 gige-g3-3.core1.nyc4.he.net 1.288 ms 2.001 ms 10.176 ms
4 10gigabitethernet8-3.core1.chi1.he.net 26.603 ms 20.532 ms 25.029 ms
5 2001:470:1:34::2 72.033 ms 72.377 ms 72.686 ms
6 iana.r1.ord1.isc.org 76.288 ms 72.773 ms 71.481 ms
7 int-0-0-1-8.r1.pao1.isc.org 73.027 ms 76.489 ms 77.507 ms
8 int-0-0-1-0.r2.sql1.isc.org 73.555 ms 75.367 ms 74.769 ms
9 www.NetBSD.org 72.036 ms 72.522 ms 71.39 ms
$
Internet Control Message Protocol for IPv6

IP6 2001:470:30:84:204:d7b0:0:1.51749 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b:33435: UDP, length 12
IP6 2001:470:30:84::3 > 2001:470:30:84:204:d7b0:0:1:
 ICMP6, time exceeded in-transit [icmp6]
IP6 2001:470:30:84:204:d7b0:0:1.51749 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b:33436: UDP, length 12
[...]
IP6 2001:470:30:84:204:d7b0:0:1.51749 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b:33461: UDP, length 12
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
 2001:470:30:84:204:d7b0:0:1: ICMP6, destination unreachable[icmp6]
TCP/IP Basics: TCP

Transmission Control Protocol

$ telnet www.google.com 80
Trying 173.194.73.99...
Connected to www.google.com.
Escape character is ‘^]’.
GET / HTTP/1.0
TCP/IP Basics: TCP

Transmission Control Protocol

IP 166.84.7.99.58356 > 67.195.160.76.80: S
 2267539609:2267539609(0) win 32768
 <mss 1460,nop,wscale 3,sackOK,nop,nop,nop,nop,timestamp 10>

IP 67.195.160.76.80 > 166.84.7.99.58356: S
 3229501874:3229501874(0) ack 2267539610 win 5792
 <mss 1440,sackOK,timestamp 1241180702 1,nop,wscale 8>

IP 166.84.7.99.58356 > 67.195.160.76.80: .
 ack 1 win 4197 <nop,nop,timestamp 1 1241180702>

IP 166.84.7.99.58356 > 67.195.160.76.80: P
 1:17(16) ack 1 win 4197 <nop,nop,timestamp 9 1241180702>

IP 67.195.160.76.80 > 166.84.7.99.58356: .
 ack 17 win 23 <nop,nop,timestamp 12411848 53 9>
TCP/IP Basics: TCP

Transmission Control Protocol over IPv6

$ telnet www.netbsd.org 80
Trying 2001:4f8:3:7:2e0:81ff:fe52:9a6b...
Connected to www.netbsd.org.
Escape character is ‘^[’.
GET / HTTP/1.0
TCP/IP Basics: TCP

Transmission Control Protocol IPv6

IP6 2001:470:30:84:204:d7b0:0:1.58334 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b.80: S 3232473102:3232473102(0)
 win 32768 <mss 1440,nop,wscale3,sackOK,nop,nop,nop,nop,timestamp 1[|tcp]>
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b.80 >
 2001:470:30:84:204:d7b0:0:1.58334: S 4139493123:4139493123(0)
 ack 3232473103 win 32768
IP6 2001:470:30:84:204:d7b0:0:1.58334 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b.80: . ack 1 win 4140
IP6 2001:470:30:84:204:d7b0:0:1.58334 >
 2001:4f8:3:7:2e0:81ff:fe52:9a6b.80: P 1:17(16) ack 1 win 4140
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b.80 >
 2001:470:30:84:204:d7b0:0:1.58334: . ack 17 win 33120
$ nslookup www.yahoo.com
Server: 155.246.1.20
Address: 155.246.1.20#53

Non-authoritative answer:
any-fp3-lfb.wa1.b.yahoo.com canonical name = any-fp3-real.wa1.b.yahoo.com.
Name: any-fp3-real.wa1.b.yahoo.com
Address: 98.139.183.24

$
TCP/IP Basics: UDP

User Datagram Protocol

IP (tos 0x0, ttl 64, id 0, offset 0, flags [none],
proto UDP (17), length 59) panix.netmeister.org.49164 >

IP (tos 0x0, ttl 63, id 1862, offset 0, flags [none],
proto UDP (17), length 207) cache2.ns.access.net.domain >
panix.netmeister.org.49164: 28557 4/2/2
www.yahoo.com. CNAME fp3.wg1.b.yahoo.com.[|domain]
TCP/IP Basics: UDP

User Datagram Protocol over IPv6

$ dig -6 @2001:470:20::2 www.yahoo.com

;; ANSWER SECTION:
any-fp3-real.wa1.b.yahoo.com. 60 IN A 98.139.183.24

;; Query time: 51 msec
;; MSG SIZE rcvd: 128
TCP/IP Basics: UDP

User Datagram Protocol over IPv6

IP6 (hlim 64, next-header: UDP (17), length: 39)
 2001:470:30:84:204:d7b0:0:1.65037 > 2001:470:20::2.53:

IP6 (hlim 61, next-header: UDP (17), length: 119)
 2001:470:20::2.53 > 2001:470:30:84:204:d7b0:0:1.65037:
 18545 4/0/0 www.yahoo.com.[|domain]
TCP/IP Basics: Putting it all together

TCP

UDP

IP (v4/v6)

ICMP (v4/v6)

ARP, Device Drivers

hardware (copper, fiber, radio)

Application Layer

ssh, ftp, http

dns

traceroute

Transport Layer

Network Layer

Link Layer

Physical Layer

Networking II February 26, 2018
Homework

Reading

- tcpdump(8)
- ktrace(1) / strace(1)
- tcp(4)/ip(4)
- netstat(1)
- nslookup(1)