CS 677: Parallel Programming for Many-core Processors
Lecture 10

Instructor: Philipppos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philipppos.Mordohai@stevens.edu
Project Status Update

• Due April 15
 – Show at least complete CPU version and preliminary GPU implementation
 – No experiments and timing results required

• Submit 1-2 pages by Tuesday April 14, 6pm

• Be prepared to talk about it in class
Outline

• Homework 4 discussion
• Thrust
• More CUDA Libraries
Tiling P

- Use a thread block to calculate a tile of P
 - Thread Block size determined by the TILE_SIZE
Tiling N

- Each N element is used in calculating up to \(\text{KERNEL_SIZE} \times \text{KERNEL_SIZE} \) elements of P (all elements in the tile)
High-Level Tiling Strategy

- Load a tile of N into shared memory (SM)
 - All threads participate in loading
 - A subset of threads then use each N element in SM
Input tiles need to be larger than output tiles

Block size?
Dealing with Mismatch

• Use a thread block that matches input tile
 – Each thread loads one element of the input tile
 – Some threads do not participate in calculating output
 • There will be if statements and control divergence
Setting Block Size

#define BLOCK_SIZE (TILE_SIZE + 4)

dim3 dimBlock(BLOCK_SIZE,BLOCK_SIZE);

In general, block size should be

tile size + (kernel size -1)
Shifting from output coordinates to input coordinates
Shifting from output coordinates to input coordinates

```c
int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y * TILE_SIZE + ty;
int col_o = blockIdx.x * TILE_SIZE + tx;

int row_i = row_o - 2;
int col_i = col_o - 2;
```

This is for 5×5 mask
Threads that loads halos outside N should return 0.0
float output = 0.0f;

if((row_i >= 0) && (row_i < N.height) &&
 (col_i >= 0) && (col_i < N.width)) {
 Ns[ty][tx] = N.elements[row_i*N.width + col_i];
}
else{
 Ns[ty][tx] = 0.0f;
}
Some threads do not participate in calculating output

```c
if(ty < TILE_SIZE && tx < TILE_SIZE){
    for(i = 0; i < 5; i++) {
        for(j = 0; j < 5; j++) {
            output += Mc[i][j] * Ns[i+ty][j+tx];
        }
    }
}
```
Some threads do not write output

```c
if(row_o < P.height && col_o < P.width)
    P.elements[row_o * P.width + col_o] = output;
```
Tiling Benefit Analysis

- Start with KERNEL_SIZE = 5
- Each point in an input tile is used multiple times.
 - Each boundary point (blue) is used 9 times
 - Each second-boundary point (yellow) is used 16 times
 - Each inner boundary point (red) is used 25 times
Reuse Analysis

• For TILE_SIZE = 12
 – 44 boundary points
 – 36 second-boundary points
 – 64 inside points
 – Total uses $44 \times 9 + 36 \times 16 + 64 \times 25 = 396 + 576 + 1600 = 2572$
 – Average reuse = $2572/144 = 17.9$

• As TILE_SIZE increases, the average reuse approach 25
In General

• The number of boundary layers is proportional to the KERNEL_SIZE

• The maximal reuse of each data point is \((\text{KERNEL_SIZE})^2\)
Second Approach

• Can block dimensions match output size dimensions?
Third Approach

• Match BLOCK_SIZE with TILE_SIZE instead of TILE_SIZE+KERNEL_SIZE-1
• Exploit L2 cache which is shared by all SMs
 – All relevant halo cells have been transferred to shared memory by some block
 – Therefore, they must be in L2 cache
 – Access them directly from “global memory”
Thrust

Jared Hoberock and Nathan Bell
Modified by P. Mordohai (March 2013)
A Simple Example

```cpp
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>

int main(void)
{
    // H has storage for 4 integers
    thrust::host_vector<int> H(4);

    // initialize individual elements
    H[0] = 14;
    H[1] = 20;
    H[2] = 38;
    H[3] = 46;
}
```
// H.size() returns the size of vector H
std::cout << "H has size " << H.size() << std::endl;

// print contents of H
for(int i = 0; i < H.size(); i++)
 std::cout << "H[" << i << "] = " << H[i] << std::endl;

// resize H
H.resize(2);

std::cout << "H now has size " << H.size() << std::endl;

// Copy host_vector H to device_vector D
thrust::device_vector<int> D = H;
// elements of D can be modified
D[0] = 99;
D[1] = 88;

// print contents of D
for(int i = 0; i < D.size(); i++)
 std::cout << "D[" << i << "] = " << D[i] << std::endl;

// H and D are automatically deleted when the function returns
return 0;
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

int main(void)
{
 // generate 16M random numbers on the host
 thrust::host_vector<int> h_vec(1 << 24);
 thrust::generate(h_vec.begin(), h_vec.end(), rand);

 // transfer data to the device
 thrust::device_vector<int> d_vec = h_vec;

 // sort data on the device
 thrust::sort(d_vec.begin(), d_vec.end());

 // transfer data back to host
 thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
}
Objectives

• Programmer productivity
 – Rapidly develop complex applications
 – Leverage parallel primitives
• Encourage generic programming
 – Don’t reinvent the wheel
 – E.g. one reduction to rule them all
• High performance
 – With minimal programmer effort
• Interoperability
 – Integrates with CUDA C/C++ code
What is Thrust?

- C++ template library for CUDA
 - Mimics Standard Template Library (STL)
- Containers
 - `thrust::host_vector<T>`
 - `thrust::device_vector<T>`
- Algorithms
 - `thrust::sort()`
 - `thrust::reduce()`
 - `thrust::inclusive_scan()`
 - Etc.
Namespaces

• C++ supports namespaces
 – Thrust uses thrust namespace
 • thrust::device_vector
 • thrust::copy
 – STL uses std namespace
 • std::vector
 • std::list

• Avoids collisions
 – thrust::sort()
 – std::sort()

• For brevity
 – using namespace thrust;
Containers

- Make common operations concise and readable
 - Hides `cudaMalloc`, `cudaMemcpy` and `cudaFree`

```cpp
// allocate host vector with two elements
thrust::host_vector<int> h_vec(2);

// copy host vector to device
thrust::device_vector<int> d_vec = h_vec;

// manipulate device values from the host
d_vec[0] = 13;
d_vec[1] = 27;

std::cout << "sum: " << d_vec[0] + d_vec[1] << std::endl;

// vector memory automatically released w/ free() or cudaFree()
```
Containers

- Compatible with STL containers
 - Eases integration
 - `vector`, `list`, `map`, ...

```cpp
// list container on host
std::list<int> h_list;
h_list.push_back(13);
h_list.push_back(27);

// copy list to device vector
thrust::device_vector<int> d_vec(h_list.size());
thrust::copy(h_list.begin(), h_list.end(), d_vec.begin());

// alternative method
thrust::device_vector<int> d_vec(h_list.begin(), h_list.end());
```

Note: initializing an STL container with a `device_vector` works, but results in one `cudaMemcpy()` for each element instead of a single `cudaMemcpy` for the entire vector.
Iterators

- Sequences defined by pair of iterators

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

d_vec.begin(); // returns iterator at first element of d_vec
d_vec.end(); // returns iterator one past the last element of d_vec

// [begin, end) pair defines a sequence of 4 elements

   d_vec.begin()          d_vec.end()
```

![Diagram showing the sequence from d_vec.begin() to d_vec.end()](attachment:sequence_diagram.png)
Iterators

- Iterators act like pointers

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

thrust::device_vector<int>::iterator begin = d_vec.begin();
thrust::device_vector<int>::iterator end   = d_vec.end();

int length = end - begin;  // compute size of sequence [begin, end)
end = d_vec.begin() + 3;   // define a sequence of 3 elements
```
Iterators

• Use iterators like pointers

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

thrust::device_vector<int>::iterator begin = d_vec.begin();

*begin = 13; // same as d_vec[0] = 13;
int temp = *begin; // same as temp = d_vec[0];

begin++; // advance iterator one position

*begin = 25; // same as d_vec[1] = 25;
```
Iterators

• Track memory space (host/device)
 – Guides algorithm dispatch

// initialize random values on host
thrust::host_vector<int> h_vec(1000);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// copy values to device
thrust::device_vector<int> d_vec = h_vec;

// compute sum on host
int h_sum = thrust::reduce(h_vec.begin(), h_vec.end());

// compute sum on device
int d_sum = thrust::reduce(d_vec.begin(), d_vec.end());
Iterators

- Convertible to raw pointers

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

// obtain raw pointer to device vector’s memory
int * ptr = thrust::raw_pointer_cast(&d_vec[0]);

// use ptr in a CUDA C kernel
my_kernel<<<N/256, 256>>>(N, ptr);

// Note: ptr cannot be dereferenced on the host!
// raw pointers do not know where they live
// Thrust iterators do
```
Iterators

• Wrap raw pointers with `device_ptr`

```cpp
int N = 10;

// raw pointer to device memory
int * raw_ptr;
cudaMalloc((void **) &raw_ptr, N * sizeof(int));

// wrap raw pointer with a device_ptr
thrust::device_ptr<int> dev_ptr(raw_ptr);

// use device_ptr in thrust algorithms
thrust::fill(dev_ptr, dev_ptr + N, (int) 0);

// access device memory through device_ptr
dev_ptr[0] = 1;

// extract raw pointer from device_ptr
int * raw_ptr2 = thrust::raw_pointer_cast(dev_ptr);

// free memory
cudaFree(raw_ptr);
```
Recap

• Containers
 – Manage host & device memory
 – Automatic allocation and deallocation
 – Simplify data transfers

• Iterators
 – Behave like pointers
 – Keep track of memory spaces
 – Convertible to raw pointers

• Namespaces
 – Avoid collisions
C++ Background

- **Function templates**

  ```cpp
  // function template to add numbers (type of T is variable)
  template< typename T >
  T add(T a, T b)
  {
    return a + b;
  }
  
  // add integers
  int x = 10; int y = 20; int z;
  z = add<int>(x,y); // type of T explicitly specified
  z = add(x,y); // type of T determined automatically
  
  // add floats
  float x = 10.0f; float y = 20.0f; float z;
  z = add<float>(x,y); // type of T explicitly specified
  z = add(x,y); // type of T determined automatically
  ```
C++ Background

- Function objects (Functors)

```cpp
// templated functor to add numbers
template< typename T >
class add
{
    public:
        T operator()(T a, T b)
        {
            return a + b;
        }
};

int x = 10; int y = 20; int z;
add<int> func;    // create an add functor for T=int
z = func(x,y);    // invoke functor on x and y

float x = 10; float y = 20; float z;
add<float> func;  // create an add functor for T=float
z = func(x,y);    // invoke functor on x and y
```
// this is a functor
// unlike functions, it can contain state
struct add_x {
 add_x(int x) : x(x) {}
 int operator()(int y) { return x + y; }

private:
 int x;
};

// Now you can use it like this:
add_x add42(42); // create an instance of the functor class
int i = add42(8); // and "call" it
assert(i == 50); // and it added 42 to its argument

std::vector<int> in; // assume this contains a bunch of values
std::vector<int> out;
// Pass a functor to std::transform, which calls the functor on every
// element in the input sequence, and stores the result to the output
// sequence
// unlike a function pointer this can be resolved and inlined at
// compile time
std::transform(in.begin(), in.end(), out.begin(), add_x(1));
assert(out[i] == in[i] + 1); // for all i
C++ Background

• Generic Algorithms

```cpp
// apply function f to sequences x, y and store result in z
template<typename T, typename Function>
void transform(int N, T * x, T * y, T * z, Function f)
{
    for (int i = 0; i < N; i++)
        z[i] = f(x[i], y[i]);
}

int N = 100;
int x[N]; int y[N]; int z[N];

add<int> func;  // add functor for T=int
transform(N, x, y, z, func);  // compute z[i] = x[i] + y[i]
transform(N, x, y, z, add<int>());  // equivalent
```
Algorithms

• Thrust provides many standard algorithms
 – Transformations
 – Reductions
 – Prefix Sums
 – Sorting

• Generic definitions
 – General Types
 • Built-in types (int, float, ...)
 • User-defined structures
 – General Operators
 • reduce with plus operator
 • scan with maximum operator
Algorithms

• General types and operators

```cpp
#include <thrust/reduce.h>

// declare storage
device_vector<int>   i_vec = ...
device_vector<float> f_vec = ...

// sum of integers (equivalent calls)
reduce(i_vec.begin(), i_vec.end());
reduce(i_vec.begin(), i_vec.end(), 0, plus<int>());

// sum of floats (equivalent calls)
reduce(f_vec.begin(), f_vec.end());
reduce(f_vec.begin(), f_vec.end(), 0.0f, plus<float>());

// maximum of integers
reduce(i_vec.begin(), i_vec.end(), 0, maximum<int>());
```

Initial value of sum
Algorithms

- General types and operators

```cpp
struct negate_float2
{
    __host__ __device__
    float2 operator()(float2 a)
    {
        return make_float2(-a.x, -a.y);
    }
};

// declare storage
device_vector<float2> input  = ...  
device_vector<float2> output = ...

// create functor
negate_float2 func;

// negate vectors
transform(input.begin(), input.end(), output.begin(), func);
```
Algorithms

• General types and operators

```cpp
// compare x component of two float2 structures
struct compare_float2
{
    __host__ __device__
    bool operator()(float2 a, float2 b) {
        return a.x < b.x;
    }
};

// declare storage
device_vector<float2> vec = ...

// create comparison functor
compare_float2 comp;

// sort elements by x component
sort(vec.begin(), vec.end(), comp);
```
Algorithms

• Operators with State

// compare x component of two float2 structures
struct is_greater_than
{
 int threshold;

 is_greater_than(int t) { threshold = t; }

 __host__ __device__
 bool operator()(int x) { return x > threshold; }
};

device_vector<int> vec = ...

// create predicate functor (returns true for x > 10)
is_greater_than pred(10);

// count number of values > 10
int result = count_if(vec.begin(), vec.end(), pred);
Recap

• Algorithms
 – Generic
 • Support general types and operators
 – Statically dispatched based on iterator type
 • Memory space is known at compile time
 – Have default arguments
 • \texttt{reduce(begin, end)}
 • \texttt{reduce(begin, end, init, binary_op)}
Fancy Iterators

• Behave like “normal” iterators
 – Algorithms don't know the difference

• Examples
 – constant_iterator
 – counting_iterator
 – transform_iterator
 – permutation_iterator
 – zip_iterator
Fancy Iterators

- **constant_iterator**
 - Mimics an infinite array filled with a constant value

```cpp
// create iterators
constant_iterator<int> begin(10);
constant_iterator<int> end = begin + 3;

begin[0]  // returns 10
begin[1]  // returns 10
begin[100] // returns 10

// sum of [begin, end)
reduce(begin, end);  // returns 30 (i.e. 3 * 10)
```
Fancy Iterators

• **counting_iterator**
 – Mimics an infinite array with sequential values

```cpp
// create iterators
counting_iterator<int> begin(10);
counting_iterator<int> end = begin + 3;

begin[0]  // returns 10
begin[1]  // returns 11
begin[100] // returns 110

// sum of [begin, end)
reduce(begin, end);  // returns 33 (i.e. 10 + 11 + 12)
```
Fancy Iterators

- `transform_iterator`
 - Yields a transformed sequence
 - Facilitates kernel fusion (e.g. sum of squares)
Fancy Iterators

• transform_iterator

 – Conserves memory capacity and bandwidth

```cpp
// initialize vector
device_vector<int> vec(3);

// create iterator (type omitted)
first = make_transform_iterator(vec.begin(), negate<int>());
last = make_transform_iterator(vec.end(), negate<int>());

first[0] // returns -10
first[1] // returns -20

// sum of [begin, end)
reduce(first, last); // returns -60 (i.e. -10 + -20 + -30)
```
Fancy Iterators

• `zip_iterator`
 – Looks like an array of structs (AoS)
 – Stored in structure of arrays (SoA)
Fancy Iterators

• `zip_iterator`

// initialize vectors
device_vector<int> A(3);
device_vector<char> B(3);

// create iterator (type omitted)
first = make_zip_iterator(make_tuple(A.begin(), B.begin()));
last = make_zip_iterator(make_tuple(A.end(), B.end()));

first[0] // returns tuple(10, 'x')
first[1] // returns tuple(20, 'y')
first[2] // returns tuple(30, 'z')

// maximum of [begin, end)
maximum< tuple<int,char> > binary_op;
reduce(first, last, first[0], binary_op); // returns tuple(30, 'z')
// tuple() defines a comparison operator
Best Practices

• Fusion
 – Combine related operations together

• Structure of Arrays
 – Ensure memory coalescing

• Implicit Sequences
 – Eliminate memory accesses
Fusion

• Combine related operations together
 – Conserves memory bandwidth

• Example: SNRM2
 – Square each element
 – Compute sum of squares and take sqrt()
Fusion

- Unoptimized implementation

```c
// define transformation f(x) -> x^2
struct square
{
    __host__ __device__
    float operator()(float x)
    {
        return x * x;
    }

};

float snrm2_slow(device_vector<float>& x)
{
    // without fusion
    device_vector<float> temp(x.size());
    transform(x.begin(), x.end(), temp.begin(), square());

    return sqrt( reduce(temp.begin(), temp.end()) );
}
```
Fusion

- Optimized implementation (3.8x faster)

```c++
// define transformation f(x) -> x^2
struct square {
    __host__ __device__ float operator()(float x) {
        return x * x;
    }
};

float snrm2_fast(device_vector<float>& x) {
    // with fusion
    return sqrt(transform_reduce(x.begin(), x.end(), square(), 0.0f, plus<float>()));
}
```
Structure of Arrays (SoA)

- **Array of Structures (AoS)**
 - Often does not obey coalescing rules
 - `device_vector<float3>`

- **Structure of Arrays (SoA)**
 - Obeys coalescing rules
 - Components stored in separate arrays
 - `device_vector<float> x, y, z;`

- **Example: Rotate 3d vectors**
 - SoA is 2.8x faster
struct rotate_float3
{
 __host__ __device__ float3 operator()(float3 v)
 {
 float x = v.x;
 float y = v.y;
 float z = v.z;

 float rx = 0.36f*x + 0.48f*y -0.80f*z;
 float ry =-0.80f*x + 0.60f*y + 0.00f*z;
 float rz = 0.48f*x + 0.64f*y + 0.60f*z;

 return make_float3(rx, ry, rz);
 }
};

...

device_vector<float3> vec(N);

transform(vec.begin(), vec.end, vec.begin(), rotate_float3());
struct rotate_tuple
{
 __host__ __device__
 tuple<float,float,float> operator()(tuple<float,float,float> v)
 {
 float x = get<0>(v);
 float y = get<1>(v);
 float z = get<2>(v);

 float rx = 0.36f*x + 0.48f*y + -0.80f*z;
 float ry = -0.80f*x + 0.60f*y + 0.00f*z;
 float rz = 0.48f*x + 0.64f*y + 0.60f*z;

 return make_tuple(rx, ry, rz);
 }
};

...

device_vector<float> x(N), y(N), z(N);

transform(make_zip_iterator(make_tuple(x.begin(), y.begin(), z.begin())),
 make_zip_iterator(make_tuple(x.end(), y.end(), z.end())),
 make_zip_iterator(make_tuple(x.begin(), y.begin(), z.begin())),
 rotate_tuple());
Implicit Sequences

• Avoid storing sequences explicitly
 – Constant sequences
 • \([1, 1, 1, 1, \ldots]\)
 – Incrementing sequences
 • \([0, 1, 2, 3, \ldots]\)

• Implicit sequences require no storage
 – constant_iterator
 – counting_iterator

• Example
 – Index of the smallest element
Implicit Sequences

// return the smaller of two tuples
struct smaller_tuple
{
 tuple<float, int> operator()(tuple<float, int> a, tuple<float, int> b)
 {
 if (a < b)
 return a;
 else
 return b;
 }
};

int min_index(device_vector<float>& vec)
{
 // create explicit index sequence [0, 1, 2, ...)
 device_vector<int> indices(vec.size());
 sequence(indices.begin(), indices.end());

 tuple<float, int> init(vec[0], 0);
 tuple<float, int> smallest;

 smallest = reduce(make_zip_iterator(make_tuple(vec.begin(), indices.begin())),
 make_zip_iterator(make_tuple(vec.end(), indices.end())),
 init,
 smaller_tuple());

 return get<1>(smallest);
}
// return the smaller of two tuples
struct smaller_tuple
{
 tuple<float, int> operator()(tuple<float, int> a, tuple<float, int> b)
 {
 if (a < b)
 return a;
 else
 return b;
 }
};

int min_index(device_vector<float>& vec)
{
 // create implicit index sequence [0, 1, 2, ...)
 counting_iterator<int> begin(0);
 counting_iterator<int> end(vec.size());

 tuple<float, int> init(vec[0], 0);
 tuple<float, int> smallest;

 smallest = reduce(make_zip_iterator(make_tuple(vec.begin(), begin)),
 make_zip_iterator(make_tuple(vec.end(), end)),
 init,
 smaller_tuple());

 return get<1>(smallest);
}
Recap

• Best Practices
 – Fusion
 • 3.8x faster
 – Structure of Arrays
 • 2.8x faster
 – Implicit Sequences
 • 3.4x faster
Additional Resources

• Thrust
 – Homepage http://thrust.github.io/
 – More
CUDA Libraries

Joseph Kider
University of Pennsylvania
CIS 565 - Spring 2011

Libraries
CUBLAS
CUFFT
MAGMA
CULA
Thrust
...

67
CUDA Specialized Libraries: PyCUDA

- PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python
PyCUDA

- Third party open source, written by Andreas Klöckner
- Exposes all of CUDA via Python bindings
- Compiles CUDA on the fly
 - CUDA is presented as an interpreted language
- Integrated with numpy
- Handles memory management, resource allocation
- CUDA programs are Python strings
 - Metaprogramming - modify source code on the fly

https://developer.nvidia.com/pycuda
PyCUDA - Differences

• Object cleanup tied to lifetime of objects
 – Easier to write correct, leak- and crash-free code
 – PyCUDA knows about dependencies, too, so it won’t detach from a context before all memory allocated in it is also freed

• Convenience: Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime

• Completeness: PyCUDA provides the full power of CUDA’s driver API

• Automatic Error Checking: All CUDA errors are automatically translated into Python exceptions

• Speed: PyCUDA’s base layer is written in C++
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

a = numpy.random.randn(4,4).astype(numpy.float32)
a_gpu = cuda.mem Alloc(a.size, a.dtype.itemsize)
cuda.mempy_htod(a_gpu, a)

mod = cuda.sourceModule(""
__global__ void doublify(float *a)
{
 int idx = threadIdx.x + threadIdx.y*4;
 a[idx] *= 2.0f;
}
"")
func = mod.get_function("doublify")
func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.mempy_dtoh(a_doubled, a_gpu)
print a_doubled
print a
Metaprogramming

In GPU scripting, GPU code does \textit{not} need to be a compile-time constant.

(Key: Code is data—it \textit{wants} to be reasoned about at run time)
CUDA Specialized Libraries: CUDPP

• CUDPP: CUDA Data Parallel Primitives Library
 – CUDPP is a library of data-parallel algorithm primitives such as parallel prefix-sum ("scan"), parallel sort and parallel reduction

http://cudpp.github.io/
CUDPP - Design Goals

• Performance: aims to provide best-of-class performance for simple primitives
• Modularity: primitives easily included in other applications
 – CUDPP is provided as a library that can link against other applications
 – CUDPP calls run on the GPU on GPU data
 • They can be used as standalone calls on the GPU (on GPU data initialized by the calling application)
 • As GPU components in larger CPU/GPU applications.
CUDPP - Design Goals

• CUDPP is implemented as 4 layers:
 – The Public Interface is the external library interface, which is the intended entry point for most applications. The public interface calls into the Application-Level API.
 – The Application-Level API comprises functions callable from CPU code. These functions execute code jointly on the CPU (host) and the GPU by calling into the Kernel-Level API below them.
 – The Kernel-Level API comprises functions that run entirely on the GPU across an entire grid of thread blocks. These functions may call into the CTA-Level API below them.
 – The CTA-Level API comprises functions that run entirely on the GPU within a single Cooperative Thread Array (CTA, aka thread block). These are low-level functions that implement core data-parallel algorithms, typically by processing data within shared memory.
CUDPP - Design Goals

• Programmers may use any of the lower three CUDPP layers in their own programs by building the source directly into their application.

• However, the typical usage of CUDPP is to link to the library and invoke functions in the CUDPP Public Interface.
CUDPP + Thrust

- CUDPP's interface is optimized for performance while Thrust is oriented towards productivity

```c
int main(void)
{
    unsigned int numElements = 32768;

    // allocate host memory
    thrust::host_vector<float> h_idata(numElements);
    // initialize the memory
    thrust::generate(h_idata.begin(), h_idata.end(), rand);
}```
CUDPP + Thrust

// set up plan
CUDPPConfiguration config;
config.op = CUDPP_ADD;
config.datatype = CUDPP_FLOAT;
config.algorithm = CUDPP_SCAN;
config.options = CUDPP_OPTION_FORWARD | CUDPP_OPTION_EXCLUSIVE;

CUDPCHandle scanplan = 0;
CUDPPResult result = cudppPlan(&scanplan, config, numElements, 1, 0);

if(CUDPP_SUCCESS != result)
{
    printf("Error creating CUDPPPlan\n");
    exit(-1);
}

// Run the scan
    thrust::raw_pointer_cast(&d_odata[0]),
    thrust::raw_pointer_cast(&d_idata[0]),
    numElements);
CUDA Specialized Libraries: CUBLAS

- Cuda Basic Linear Algebra Subroutines
- Saxpy, conjugate gradient, linear solvers

https://developer.nvidia.com/cublas
CUBLAS

• CUDA accelerated BLAS (Basic Linear Algebra Subprograms)
  – Create matrix and vector objects in GPU memory space
  – Fill objects with data
  – Call sequence of CUBLAS functions
  – Retrieve data from GPU
CUBLAS

- GPU Variant 100 times faster than CPU version
- Matrix size is limited by graphics card memory and texture size
- Although taking advantage of sparse matrices would help reduce memory consumption, sparse matrix storage is not implemented by CUBLAS
CUDA Specialized Libraries: CUFFT

• Cuda Based Fast Fourier Transform Library
• The FFT is a divide-and-conquer algorithm for efficiently computing discrete Fourier transforms of complex or real-valued data sets
• One of the most important and widely used numerical algorithms, with applications that include computational physics and general signal processing
CUFFT

• Computes parallel FFT on the GPU
• Uses “plans” like FFTW*
  – A plan contains information about optimal configuration for a given transform
  – Plans can prevent recalculation
  – Good fit for CUFFT because different kinds of FFTs require different thread/block configurations

* FFTW is a popular CPU library for FFT
CUFFT

• 1D, 2D and 3D transforms of complex and real-valued data
• Batched execution for doing multiple 1D transforms in parallel
• 1D transform size up to 8M elements
• 2D and 3D transform sizes in the range [2, 16384]
• In-place and out-of-place transforms
#define NX 256
#define NY 128

cufftHandle plan;
cufftComplex *idata, *odata;
cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);
cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);

/* Create a 2D FFT plan. */
cufftPlan2d(&plan, NX, NY, CUFFT_C2C);

/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(idata);
cudaFree(odata);
CUFFT: Performance – CPU vs GPU

Gflops  Single Precision FFT

Gflops  Double Precision FFT

cuFFT 2.3: NVIDIA Tesla C1060 GPU
MKL 10.1r1: Quad-Core Intel Core i7 (Nehalem) 3.2GHz
CUDA Specialized Libraries: CULA

- CULA is EM Photonics' GPU-accelerated numerical linear algebra library that contains a growing list of LAPACK functions.
- LAPACK stands for Linear Algebra PACKage. It is an industry standard computational library that has been in development for over 15 years and provides a large number of routines for factorization, decomposition, system solvers, and eigenvalue problems.
CUDA Specialized Libraries: HONEI
(Hardware oriented numerics, efficiently implemented)

A collection of libraries for numerical computations targeting multiple processor architectures
HONEI

- HONEI is an open-source collection of libraries offering a hardware oriented approach to numerical calculations.
- HONEI abstracts the hardware, and applications written on top of HONEI can be executed on a wide range of computer architectures such as CPUs, GPUs and the Cell processor.
  - The most important frontend library is libhoneila, HONEI's linear algebra library.
  - The numerics and math library libhoneimath contains high performance kernels for iterative linear system solvers as well as other useful components like interpolation and approximation.