CS 677: Parallel Programming for Many-core Processors
Lecture 2

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu
Overview

• Simple encryption example
• Blocks, threads and warps
• CUDA memory types
• Matrix Multiplication using Shared Memory
• Thread Execution and Divergence
• Atomics
Encryption Example

```cpp
#include <iostream>
#include <cutil.h>

using namespace std;

__global__ void cuda_encrypt(char* m, int m_len, int shift) {
    for (int i = 0; i < m_len; i++)
        m[i] = (((m[i] - 'a') + shift) % 26) + 'a';
}
```

Courtesy of Werner Backes
int main()
{
 char message[255];
 int message_len, shift;
 char* dev_message;

 cin >> message;
 cin >> shift;
 cout << "plaintext: " << message << endl;
 message_len = strlen(message);

 cudaMalloc(&dev_message, message_len+1);
 cudaMemcpy(dev_message, message, message_len+1,
 cudaMemcpyHostToDevice);
 cuda_encrypt<<<1,1>>>(dev_message, message_len, shift);
 cudaMemcpy(message, dev_message, message_len+1,
 cudaMemcpyDeviceToHost);

 cout << "ciphertext: " << message << endl;
 return 0;
}
Compilation and Execution

• Compile the example program hello world.cu using the CUDA compiler nvcc.
 – nvcc -I. hello_world.cu -o hello_world
 – The option -I is used to add an include path
 – nvcc --help outputs all available compiler options

• Output:
 – Execute ./hello_world
 helloworld
 3
 plaintext: helloworld
ciphertext: khoorzruog

Parallel Encryption Example

```c
#include <iostream>
#include <cutil.h>

using namespace std;

__global__ void cuda_encrypt(char* m, int m_len, int shift)
{
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    if (tid < m_len)
        m[tid] = (((m[tid] - 'a') + shift) % 26) + 'a';
}
```
```c++
int main()
{
    char message[255];
    int message_len, shift;
    char* dev_message;

    cin >> message;
    cin >> shift;
    cout << "plaintext: " << message << endl;
    message_len = strlen(message);

    cudaMalloc(&dev_message, message_len+1);
    cudaMemcpy(dev_message, message, message_len+1, cudaMemcpyHostToDevice);
    cuda_encrypt<<<(message_len/32)+1,32>>>(dev_message, message_len, shift);
    cudaMemcpy(message, dev_message, message_len+1, cudaMemcpyDeviceToHost);

    cout << "ciphertext: " << message << endl;
    return 0;
}
```
Block IDs and Thread IDs

- Each thread uses IDs to decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - ...

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign
Matrix Multiplication Using Multiple Blocks

- Break-up P_d into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equal to tile size
A Small Example

Block(0,0) Block(1,0)

\[
\begin{array}{cccc}
P_{0,0} & P_{1,0} & P_{2,0} & P_{3,0} \\
P_{0,1} & P_{1,1} & P_{2,1} & P_{3,1} \\
P_{0,2} & P_{1,2} & P_{2,2} & P_{3,2} \\
P_{0,3} & P_{1,3} & P_{2,3} & P_{3,3} \\
\end{array}
\]

TILE_WIDTH = 2

Block(0,1) Block(1,1)
A Small Example: Multiplication
Revised Matrix Multiplication Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

    Pd[Row*Width+Col] = Pvalue;
}
```
Revised Step 5: Kernel Invocation
(Host-side Code)

// Setup the execution configuration
dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads
MatrixMulKernel<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
CUDA Thread Block

- All threads in a block execute the same kernel program (SPMD)
- Programmer declares block:
 - Block size 1 to 512 concurrent threads
 - Block shape 1D, 2D, or 3D
 - Block dimensions in threads
- Threads have thread id numbers within block
 - Thread program uses thread id to select work and address shared data
- Threads in the same block share data and synchronize while doing their share of the work
- Threads in different blocks cannot cooperate
 - Each block can execute in any order relative to other blocks!
Transparent Scalability

- Hardware is free to assign blocks to any processor at any time
 - A kernel scales across any number of parallel processors

Each block can execute in any order relative to other blocks.
G80 Example: Executing Thread Blocks

- Threads are assigned to Streaming Multiprocessors in block granularity
 - Up to 8 blocks to each SM as resource allows
 - SM in G80 can take up to 768 threads
 - Could be 256 (threads/block) * 3 blocks
 - Or 128 (threads/block) * 6 blocks, etc.
- Threads run concurrently
 - SM maintains thread/block id #s
 - SM manages/schedules thread execution
G80 Example: Thread Scheduling

- Each Block is executed as 32-thread Warps
 - An implementation decision, not part of the CUDA programming model
 - Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps
G80 Example: Thread Scheduling (Cont.)

- SM implements zero-overhead warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible Warps are selected for execution on a prioritized scheduling policy
 - All threads in a warp execute the same instruction when selected
G80 Block Granularity Considerations

• For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?

 – For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM!

 – For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule.

 – For 32X32, we have 1024 threads per Block. Not even one can fit into an SM!
Technical Specifications per Compute Capability

<table>
<thead>
<tr>
<th>Technical specifications</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>2.x</th>
<th>3.0</th>
<th>3.5</th>
<th>5.0</th>
<th>5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum dimensionality of grid of thread blocks</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum x-dimension of a grid of thread blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum y-, or z-dimension of a grid of thread blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum dimensionality of thread block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum x- or y-dimension of a block</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum z-dimension of a block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Maximum number of threads per block</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warp size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident blocks per multiprocessor</td>
<td>8</td>
<td>32</td>
<td>48</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident warps per multiprocessor</td>
<td>24</td>
<td>32</td>
<td>48</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of resident threads per multiprocessor</td>
<td>768</td>
<td>1024</td>
<td>1536</td>
<td>2048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of 32-bit registers per multiprocessor</td>
<td>8 K</td>
<td>16 K</td>
<td>32 K</td>
<td>64 K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of 32-bit registers per thread</td>
<td>128</td>
<td>63</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum amount of shared memory per multiprocessor</td>
<td>16 KB</td>
<td>48 KB</td>
<td>64 KB</td>
<td>96 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of shared memory banks</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of local memory per thread</td>
<td>16 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant memory size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache working set per multiprocessor for constant memory</td>
<td>8 KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major version number:
1: Tesla
2: Fermi
3: Kepler
5: Maxwell
More Details of API Features
Application Programming Interface

• The API is an extension to the C programming language

• It consists of:
 – Language extensions
 • To target portions of the code for execution on the device
 – A runtime library split into:
 • A common component providing built-in vector types and a subset of the C runtime library in both host and device code
 • A host component to control and access one or more devices from the host
 • A device component providing device-specific functions
Language Extensions: Built-in Variables

- `dim3 gridDim;`
 - Dimensions of the grid in blocks (`gridDim.z` unused)
- `dim3 blockDim;`
 - Dimensions of the block in threads
- `dim3 blockIdx;`
 - Block index within the grid
- `dim3 threadIdx;`
 - Thread index within the block
Common Runtime Component: Mathematical Functions

- `pow, sqrt, cbrt, hypot`
- `exp, exp2, expm1`
- `log, log2, log10, log1p`
- `sin, cos, tan, asin, acos, atan, atan2`
- `sinh, cosh, tanh, asinh, acosh, atanh`
- `ceil, floor, trunc, round`
- Etc.

 - When executed on the host, a given function uses the C runtime implementation if available
 - These functions are only supported for scalar types, not vector types
Device Runtime Component: Mathematical Functions

• Some mathematical functions (e.g. $\sin(x)$) have a less accurate, but faster device-only version (e.g. **__sin(x)__)
 - **__pow__
 - **__log, __log2, __log10__
 - **__exp__
 - **__sin, __cos, __tan__
Host Runtime Component

• Provides functions to deal with:
 – **Device** management (including multi-device systems)
 – **Memory** management
 – **Error** handling

• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one device
 – Multiple host threads required to run on multiple devices
Device Runtime Component: Synchronization Function

- `void __syncthreads();`
- Synchronizes all threads in a block
- Once all threads have reached this point, execution resumes normally
- Used to avoid RAW / WAR / WAW hazards when accessing shared or global memory
- Allowed in conditional constructs only if the conditional is uniform across the entire thread block
CUDA Memories
Hardware Implementation of CUDA Memories

• Each thread can:
 – Read/write per-thread registers
 – Read/write per-thread local memory
 – Read/write per-block shared memory
 – Read/only per-grid global memory
 – Read/only per-grid constant memory
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>int var;</td>
<td>register</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>int array_var[10];</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>shared int shared_var;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int global_var;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>constant int constant_var;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **“automatic” scalar variables** without qualifier reside in a register
 - compiler will spill to thread local memory
- **“automatic” array variables** without qualifier reside in thread local memory
CUDA Variable Type Performance

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>int var;</td>
<td>register</td>
<td>1x</td>
</tr>
<tr>
<td>int array_var[10];</td>
<td>local</td>
<td>100x</td>
</tr>
<tr>
<td>shared int shared_var;</td>
<td>shared</td>
<td>1x</td>
</tr>
<tr>
<td>device int global_var;</td>
<td>global</td>
<td>100x</td>
</tr>
<tr>
<td>constant int constant_var;</td>
<td>constant</td>
<td>1x</td>
</tr>
</tbody>
</table>

- scalar variables reside in fast, on-chip registers
- shared variables reside in fast, on-chip memories
- thread-local arrays & global variables reside in uncached off-chip memory
 - Cache is now available, but there is still a significant drop off in speed
- constant variables reside in cached off-chip memory
CUDA Variable Type Scale

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Instances</th>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>int var;</td>
<td>100,000s</td>
<td>1</td>
</tr>
<tr>
<td>int array_var[10];</td>
<td>100,000s</td>
<td>1</td>
</tr>
<tr>
<td>shared int shared_var;</td>
<td>100s</td>
<td>100s</td>
</tr>
<tr>
<td>device int global_var;</td>
<td>1</td>
<td>100,000s</td>
</tr>
<tr>
<td>constant int constant_var;</td>
<td>1</td>
<td>100,000s</td>
</tr>
</tbody>
</table>

- 100Ks per-thread variables, R/W by 1 thread
- 100s shared variables, each R/W by 100s of threads
- 1 global variable is R/W by 100Ks threads
- 1 constant variable is readable by 100Ks threads
Where to declare variables?

Can host access it?

Yes

Outside of any function

__constant__ int constant_var;
__device__ int global_var;

No

In the kernel

int var;
int array_var[10];
__shared__ int shared_var;
Example - thread-local variables

// Ten Nearest Neighbors application
__global__ void ten_nn(float2 *result, float2 *ps, float2 *qs,
 size_t num_qs)
{
 // p goes in a register
 float2 p = ps[threadIdx.x];

 // per-thread heap goes in off-chip memory
 float2 heap[10];

 // read through num_qs points, maintaining
 // the nearest 10 qs to p in the heap
 ...
 // write out the contents of heap to result
 ...
}
Example - shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}
Example - shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // what are the bandwidth requirements of this kernel?
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}
Example - shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
 if(i > 0)
 {
 // How many times does this kernel load input[i]?
 int x_i = input[i]; // once by thread i
 int x_i_minus_one = input[i-1]; // again by thread i+1

 result[i] = x_i - x_i_minus_one;
 }
}
Example - shared variables

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
 // shorthand for threadIdx.x
 int tx = threadIdx.x;
 // allocate a __shared__ array, one element per thread
 __shared__ int s_data[BLOCK_SIZE];
 // each thread reads one element to s_data
 unsigned int i = blockDim.x * blockIdx.x + tx;
 s_data[tx] = input[i];

 // avoid race condition: ensure all loads
 // complete before continuing
 __syncthreads();
...

if(tx > 0)
 result[i] = s_data[tx] - s_data[tx-1];
else if(i > 0)
{
 // handle thread block boundary
 result[i] = s_data[tx] - input[i-1];
}
}
Example - shared variables

// when the size of the array isn’t known at compile time...
__global__ void adj_diff(int *result, int *input)
{
 // use extern to indicate a __shared__ array will be
 // allocated dynamically at kernel launch time
 extern __shared__ int s_data[];
 ...
}

// pass the size of the per-block array, in bytes, as the third
// argument to the triple chevrons
adj_diff<<<num_blocks, block_size, block_size * sizeof(int)>>>(r,i);

• Only one extern shared array can be declared
 • See CUDA programming guide for work-around
About Pointers - Outdated but Useful

• Yes, you can use them!
• You can point to any memory space:

```c
__device__ int my_global_variable;
__constant__ int my_constant_variable = 13;

__global__ void foo(void)
{
    __shared__ int my_shared_variable;

    int *ptr_to_global = &my_global_variable;
    const int *ptr_to_constant = &my_constant_variable;
    int *ptr_to_shared = &my_shared_variable;

    ...
    *ptr_to_global = *ptr_to_shared;
}
```
About Pointers - Outdated but Useful

• Pointers aren’t typed on memory space
 – \texttt{__shared__ int *ptr;}
 – Where does \texttt{ptr} point?
 – \texttt{ptr} is a \texttt{__shared__} pointer variable, not a pointer to a \texttt{__shared__} variable!
Don’t confuse the compiler!

```c
__device__ int my_global_variable;
__global__ void foo(int *input)
{
    __shared__ int my_shared_variable;

    int *ptr = 0;
    if(input[threadIdx.x] % 2)
        ptr = &my_global_variable;
    else
        ptr = &my_shared_variable;
    // where does ptr point?
}
```
Advice

• Prefer dereferencing pointers in simple, regular access patterns
• Avoid propagating pointers
• Avoid pointers to pointers
 – The GPU would rather not pointer chase
 – Linked lists will not perform well
• Pay attention to compiler warning messages
 – Warning: Cannot tell what pointer points to, assuming global memory space
 – Crash waiting to happen
Matrix Multiplication using Shared Memory
Review: Matrix Multiplication Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column idenx of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

    Pd[Row*Width+Col] = Pvalue;
}
```
How about performance on GPU?

• All threads access global memory for their input matrix elements
 – Two memory accesses (8 bytes) per floating point multiply-add
 – 4B/s of memory bandwidth/FLOPS
 – 4*346.5 = 1386 GB/s required to achieve peak FLOP rating
 – 86.4 GB/s limits the code at 21.6 GFLOPS

• The actual code runs at about 15 GFLOPS

• Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS (on G80 - ignore specific numbers)
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by Width threads
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 - Tiled algorithms
Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd
A Small Example
Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P

<table>
<thead>
<tr>
<th>P₀₀,₀ thread₀₀</th>
<th>P₁₀,₀ thread₁₀</th>
<th>P₀₁,₀ thread₀₁</th>
<th>P₁₁,₀ thread₁₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₀₀,₀ * N₀₀,₀</td>
<td>M₀₀,₀ * N₁₀,₀</td>
<td>M₀₁,₀ * N₀₀,₀</td>
<td>M₀₁,₀ * N₁₀,₀</td>
</tr>
<tr>
<td>M₁₀,₀ * N₀₁,₀</td>
<td>M₁₀,₀ * N₁₁,₀</td>
<td>M₁₁,₀ * N₀₁,₀</td>
<td>M₁₁,₀ * N₁₁,₀</td>
</tr>
<tr>
<td>M₂₀,₀ * N₀₂,₀</td>
<td>M₂₀,₀ * N₁₂,₀</td>
<td>M₂₁,₀ * N₀₂,₀</td>
<td>M₂₁,₀ * N₁₂,₀</td>
</tr>
<tr>
<td>M₃₀,₀ * N₀₃,₀</td>
<td>M₃₀,₀ * N₁₃,₀</td>
<td>M₃₁,₀ * N₀₃,₀</td>
<td>M₃₁,₀ * N₁₃,₀</td>
</tr>
</tbody>
</table>
Breaking Md and Nd into Tiles

• Break up the inner product loop of each thread into phases

• At the beginning of each phase, load the Md and Nd elements that everyone needs during the phase into shared memory

• Everyone accesses the Md and Nd elements from shared memory during the phase
Work for Block (0,0)
Work for Block (0,0)

\[
\begin{array}{cccc}
N_{0,0} & N_{0,1} & N_{0,2} & N_{0,3} \\
N_{1,0} & N_{1,1} & N_{1,2} & N_{1,3} \\
N_{2,0} & N_{2,1} & N_{2,2} & N_{2,3} \\
N_{3,0} & N_{3,1} & N_{3,2} & N_{3,3} \\
\end{array}
\]

\[
\begin{array}{cccc}
M_{0,0} & M_{0,1} & M_{0,2} & M_{0,3} \\
M_{1,0} & M_{1,1} & M_{1,2} & M_{1,3} \\
M_{2,0} & M_{2,1} & M_{2,2} & M_{2,3} \\
M_{3,0} & M_{3,1} & M_{3,2} & M_{3,3} \\
\end{array}
\]

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012
Work for Block (0,0)
Work for Block (0,0)

<table>
<thead>
<tr>
<th>N0,0</th>
<th>N0,1</th>
<th>N0,2</th>
<th>N0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1,0</td>
<td>N1,1</td>
<td>N1,2</td>
<td>N1,3</td>
</tr>
<tr>
<td>N2,0</td>
<td>N2,1</td>
<td>N2,2</td>
<td>N2,3</td>
</tr>
<tr>
<td>N3,0</td>
<td>N3,1</td>
<td>N3,2</td>
<td>N3,3</td>
</tr>
</tbody>
</table>

SM

<table>
<thead>
<tr>
<th>M0,0</th>
<th>M0,1</th>
<th>M0,2</th>
<th>M0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1,0</td>
<td>M1,1</td>
<td>M1,2</td>
<td>M1,3</td>
</tr>
<tr>
<td>M2,0</td>
<td>M2,1</td>
<td>M2,2</td>
<td>M2,3</td>
</tr>
<tr>
<td>M3,0</td>
<td>M3,1</td>
<td>M3,2</td>
<td>M3,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P0,0</th>
<th>P0,1</th>
<th>P0,2</th>
<th>P0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1,0</td>
<td>P1,1</td>
<td>P1,2</td>
<td>P1,3</td>
</tr>
<tr>
<td>P2,0</td>
<td>P2,1</td>
<td>P2,2</td>
<td>P2,3</td>
</tr>
<tr>
<td>P3,0</td>
<td>P3,1</td>
<td>P3,2</td>
<td>P3,3</td>
</tr>
</tbody>
</table>

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012
Work for Block (0,0)

\[
\begin{array}{cccc}
N_{0,0} & N_{0,1} & N_{0,2} & N_{0,3} \\
N_{1,0} & N_{1,1} & N_{1,2} & N_{1,3} \\
N_{2,0} & N_{2,1} & N_{2,2} & N_{2,3} \\
N_{3,0} & N_{3,1} & N_{3,2} & N_{3,3} \\
\end{array}
\]

\[
\begin{array}{cccc}
M_{0,0} & M_{0,1} & M_{0,2} & M_{0,3} \\
M_{1,0} & M_{1,1} & M_{1,2} & M_{1,3} \\
M_{2,0} & M_{2,1} & M_{2,2} & M_{2,3} \\
M_{3,0} & M_{3,1} & M_{3,2} & M_{3,3} \\
\end{array}
\]
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {

  1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
  2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

  3. int bx = blockIdx.x;  int by = blockIdx.y;
  4. int tx = threadIdx.x; int ty = threadIdx.y;

  // Identify the row and column of the Pd element to work on
  5. int Row = by * TILE_WIDTH + ty;
  6. int Col = bx * TILE_WIDTH + tx;

  7. float Pvalue = 0;
  // Loop over the Md and Nd tiles required to compute the Pd element
  8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

    // Collaborative loading of Md and Nd tiles into shared memory
    9.   Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
    10.  Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
    11.  __syncthreads();

    12.  for (int k = 0; k < TILE_WIDTH; ++k)
            Pvalue += Mds[ty][k] * Nds[k][tx];
    13.  __syncthreads();

    15. Pd[Row*Width + Col] = Pvalue;
}
```
CUDA Code - Kernel Execution Configuration

// Setup the execution configuration
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,
 Width / TILE_WIDTH);
First-order Size Considerations

- Each **thread block** should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads

- There should be many thread blocks
 - A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
 - TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full capacity)

- Each thread block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations (lines 9-14)
 - Memory bandwidth no longer a limiting factor
Tiled Multiply

• Each block computes one square sub-matrix $P_{d_{sub}}$ of size $TILE_WIDTH$

• Each thread computes one element of $P_{d_{sub}}$
Shared Memory and Threading

• Each SM in G80 has 16KB shared memory
 – SM size is implementation-dependent!
 – For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 – The SM can potentially have up to 8 Thread Blocks actively executing
 • This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 • The threading model limits the number of thread blocks to 3 so shared memory is not the limiting factor here
 – The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 – The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS

• Each SM in Fermi has 16KB or 48KB shared memory
 – Configurable vs L1 cache, total 64KB
Tiling Size Effects

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign
Memory Resources as Limit to Parallelism

- Effective use of different memory resources reduces the number of accesses to global memory.
- These resources are finite!
- The more memory locations each thread requires → the fewer threads an SM can accommodate → what if each thread required 22 registers and each block had 256 threads?

<table>
<thead>
<tr>
<th>Resource</th>
<th>Per GT200 SM</th>
<th>Full Occupancy on GT200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>16384</td>
<td><= 16384 / 768 threads = 21 per thread</td>
</tr>
<tr>
<td>shared Memory</td>
<td>16KB</td>
<td><= 16KB / 8 blocks = 2KB per block</td>
</tr>
</tbody>
</table>
Final Thoughts on Memory

• Effective use of CUDA memory hierarchy decreases bandwidth consumption to increase throughput
• Use `__shared__` memory to eliminate redundant loads from global memory
 – Use `__syncthreads` barriers to protect `__shared__` data
 – Use atomics if access patterns are sparse or unpredictable
• Optimization comes with a development cost
• Memory resources ultimately limit parallelism
Thread Execution and Divergence
Scheduling Blocks onto SMs

- HW Schedules thread blocks onto available SMs
 - No guarantee of ordering among thread blocks
 - HW will schedule thread blocks as soon as a previous thread block finishes
Mapping of Thread Blocks

- Each thread block is mapped to one or more warps
- The hardware schedules each warp independently

Thread Block N (128 threads) → TB N W1
TB N W2
TB N W3
TB N W4
Thread Scheduling Example

• SM implements zero-overhead warp scheduling
 – At any time, only one of the warps is executed by SM
 – Warps whose next instruction has its inputs ready for consumption are eligible for execution
 – Eligible warps are selected for execution on a prioritized scheduling policy
 – All threads in a warp execute the same instruction when selected

Instruction: 1 2 3 4 5 6 1 2 1 2 1 2 3 4 7 8 1 2 1 2 3 4

Time

TB = Thread Block, W = Warp
Control Flow Divergence

• What happens if you have the following code?

```c
if (foo(threadIdx.x))
{
    do_A();
}
else
{
    do_B();
}
```
Control Flow Divergence
Control Flow Divergence

- Nested branches

```c
if (foo(threadIdx.x))
{
    if (bar(threadIdx.x))
        do_A();
    else
        do_B();
}
else
    do_C();
```
Control Flow Divergence
Control Flow Divergence

• You don’t have to worry about divergence for correctness (*)
• You might have to think about it for performance
 – Depends on your branch conditions

* Mostly true, except corner cases (for example intra-warp locks)
Control Flow Divergence

• Performance drops off with the degree of divergence

```c
switch(threadIdx.x % N)
{
    case 0:
        ...
    case 1:
        ...
}
```
Divergence

![Graph showing the relationship between Divergence and Performance]

- **Performance** axis ranges from 0 to 35.
- **Divergence** axis ranges from 0 to 18.

As divergence increases, performance decreases sharply initially and then plateaus at lower levels.
Atomics
The Problem

• How do you do global communication?
• Finish a grid and start a new one
Global Communication

• Finish a kernel and start a new one
• All writes from all threads complete before a kernel finishes

\[
\text{step1}<<<\text{grid1},\text{blk1}>>>(...);
// The system ensures that all
// writes from step1 complete.
\text{step2}<<<\text{grid2},\text{blk2}>>>(...);
\]
Global Communication

• Would need to decompose kernels into before and after parts
Race Conditions

- Or, write to a predefined memory location
 - Race condition! Updates can be lost
Race Conditions

threadId:0

 // vector[0] was equal to 0
vector[0] += 5;
...
a = vector[0];

threadId:1917

 vector[0] += 1;
...
a = vector[0];

• What is the value of \(a \) in thread 0?
• What is the value of \(a \) in thread 1917?
Race Conditions

• Thread 0 could have finished execution before 1917 started
• Or the other way around
• Or both are executing at the same time

• Answer: not defined by the programming model, can be arbitrary
• CUDA provides atomic operations to deal with this problem
Atomics

• An atomic operation guarantees that only a single thread has access to a piece of memory while an operation completes

• The name atomic comes from the fact that it is uninterruptable

• No dropped data, but ordering is still arbitrary

• Different types of atomic instructions

 • atomic{Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor}

• More types on Fermi
Atoms

- `atomicAdd`
- returns the previous value at a certain address
Compare and Swap

```c
int compare_and_swap(int* register, int oldval, int newval)
{
    int old_reg_val = *register;
    if(old_reg_val == oldval)
        *register = newval;

    return old_reg_val;
}
```

- Most general type of atomic
- Can emulate all others with CAS
Example: Histogram

// Determine frequency of colors in a picture
// colors have already been converted into ints
// Each thread looks at one pixel and increments
// a counter atomically

__global__ void histogram(int* color,
 int* buckets)
{
 int i = threadIdx.x
 + blockDim.x * blockIdx.x;
 int c = colors[i];
 atomicAdd(&buckets[c], 1);
}
Example: Workqueue

// For algorithms where the amount of work per item
// is highly non-uniform, it often makes sense
// to continuously grab work from a queue
__global__
void workq(int* work_q, int* q_counter,
 int* output, int queue_max)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int q_index = atomicInc(q_counter, queue_max);
 int result = do_work(work_q[q_index]);
 output[i] = result;
}
Atoms

- Atomics are slower than normal load/store
- You can have the whole machine queuing on a single location in memory
- Atomics unavailable on G80
Example: Global Min/Max (Naive)

// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow

__global__
void global_max(int* values, int* gl_max)
{
 int i = threadIdx.x
 + blockDim.x * blockIdx.x;
 int val = values[i];
 atomicMax(gl_max, val);
}

Example: Global Min/Max (Better)

// introduce intermediate maximum results, so that most threads do not try to update the global max
__global__
void global_max(int* values, int* max,
 int *regional_maxes,
 int num_regions)
{
 // i and val as before ...
 int region = i % num_regions;
 if(atomicMax(®_max[region],val) < val)
 {
 atomicMax(max,val);
 }
}
Global Min/Max

• Single value causes serial bottleneck
• Create hierarchy of values for more parallelism
• Performance will still be slow, so use judiciously
Atomics - Summary

• Can’t use normal load/store for inter-thread communication because of race conditions

• Use atomic instructions for sparse and/or unpredictable global communication

• Decompose data (very limited use of single global sum/max/min/etc.) for more parallelism