CS 677: Parallel Programming for Many-core Processors
Lecture 3

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu
Overview

• A Common Programming Strategy
• Threading Hardware
• Memory Hardware
• Control Flow
 – Simple Reduction
A Common Programming Strategy

• Global memory resides in device memory (DRAM)
 – Much slower access than shared memory

• **Tile data** to take advantage of fast shared memory:
 – Generalize from `adjacent_difference` example
 • Lecture 2, slides 35-40
 – Divide and conquer
A Common Programming Strategy

- Partition data into subsets that fit into shared memory
A Common Programming Strategy

• Handle each data subset with one thread block
A Common Programming Strategy

- Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
A Common Programming Strategy

- Perform the computation on the subset from shared memory
A Common Programming Strategy

- Copy the result from **shared memory** back to global memory
A Common Programming Strategy

• Carefully partition data according to access patterns
• Read-only ➔ `__constant__` memory (fast)
• R/W & shared within block ➔ `__shared__` memory (fast)
• R/W within each thread ➔ registers (fast)
• Indexed R/W within each thread ➔ local memory (slow)
• R/W inputs/results ➔ `cudaMalloc`'ed global memory (slow)
Communication Through Memory

• Question:

```c
__global__ void race(void)
{
    __shared__ int my_shared_variable;
    my_shared_variable = threadIdx.x;

    // what is the value of
    // my_shared_variable?
}
```
Communication Through Memory

• This is a race condition
• The result is undefined
• The order in which threads access the variable is undefined without explicit coordination
• Use barriers (e.g., __syncthreads) or atomic operations (e.g., atomicAdd) to enforce well-defined semantics
Threading Hardware
Single-Program Multiple-Data (SPMD)

- CUDA integrated CPU + GPU application C program
 - Serial C code executes on CPU
 - Parallel Kernel C code executes on GPU thread blocks

```
CPU Serial Code

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

CPU Serial Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);
```
CUDA Thread Block: Review

• Programmer declares (Thread) Block:
 – Block size 1 to 512 concurrent threads
 – Block shape 1D, 2D, or 3D
 – Block dimensions in threads

• All threads in a Block execute the same thread program
• Threads share data and synchronize while doing their share of the work
• Threads have thread id numbers within Block
• Thread program uses thread id to select work and address shared data

Courtesy: John Nickolls, NVIDIA
GeForce-8 Series HW Overview

Streaming Processor Array

Texture Processor Cluster

TEX
SM
SM

Streaming Multiprocessor

Instruction L1
Data L1
Instruction Fetch/Dispatch
Shared Memory
SFU
SP
SFU
SP
SP
SFU
SP
SP
SP
SP

CUDA Processor Terminology

- **SPA**
 - Streaming Processor Array

- **TPC**
 - Texture Processor Cluster (2 or more SM + TEX)

- **SM**
 - Streaming Multiprocessor (8 or more SP)
 - Multi-threaded processor core
 - Fundamental processing unit for CUDA thread block

- **SP**
 - Streaming Processor
 - Scalar ALU for a single CUDA thread
Streaming Multiprocessor (SM)

- Streaming Multiprocessor (SM)
 - 8 Streaming Processors (SP)
 - 2 Super Function Units (SFU)
- Multi-threaded instruction dispatch
 - 1 to 512 threads active
 - Shared instruction fetch per 32 threads
 - Cover latency of texture/memory loads
- 20+ GFLOPS
- 16 KB shared memory
- texture and global memory access
Thread Lifecycle in HW

- Grid is launched on the SPA
- Thread Blocks are serially distributed to all the SM’s
 - Potentially >1 Thread Block per SM
- Each SM launches Warps of Threads
 - 2 levels of parallelism
- SM schedules and executes Warps that are ready to run
- As Warps and Thread Blocks complete, resources are freed
 - SPA can distribute more Thread Blocks
If the block was 3D, we would start with threads whose threadIdx.z = 0, then threadIdx.z = 1, etc.
SM Executes Blocks

- Threads are assigned to SMs in Block granularity
 - Up to 8 Blocks to each SM as resource allows
 - SM in G80 can take up to 768 threads
 - Could be 256 (threads/block) * 3 blocks
 - Or 128 (threads/block) * 6 blocks, etc.

- Threads run concurrently
 - SM assigns/maintains thread id #s
 - SM manages/schedules thread execution
Thread Scheduling/Execution

- Each Thread Blocks is divided in 32-thread Warps
 - This is an implementation decision, not part of the CUDA programming model
- Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each Block has 256 threads, how many Warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps
 - At any point in time, only one of the 24 Warps will be selected for instruction fetch and execution.
SM Warp Scheduling

• SM hardware implements zero-overhead Warp scheduling
 – Warps whose next instruction has its operands ready for consumption are eligible for execution
 – Eligible Warps are selected for execution on a prioritized scheduling policy
 – All threads in a Warp execute the same instruction when selected

4 clock cycles needed to dispatch the same instruction for all threads in a Warp in G80
 – If one global memory access is needed for every 4 instructions
 – A minimum of 13 Warps are needed to fully tolerate 200-cycle memory latency
SM Instruction Buffer - Warp Scheduling

- Fetch one warp instruction/cycle
 - from instruction L1 cache
 - into any instruction buffer slot
- Issue one “ready-to-go” warp instruction/cycle
 - from any warp - instruction buffer slot
 - operand scoreboarding used to prevent hazards
- Issue selection based on round-robin/age of warp
- SM broadcasts the same instruction to 32 Threads of a Warp
Scoreboarding

• How to determine if an instruction is ready to execute?
• A **scoreboard** is a table in hardware that tracks
 – instructions being fetched, issued, executed
 – resources (functional units and operands) they need
 – which instructions modify which registers
• Old concept from CDC 6600 (1960s) to separate memory and computation
Scoreboarding Example

- Consider three separate instruction streams: warp1, warp3 and warp8

<table>
<thead>
<tr>
<th>Warp</th>
<th>Current Instruction</th>
<th>Instruction State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warp 1</td>
<td>42</td>
<td>Computing</td>
</tr>
<tr>
<td>Warp 3</td>
<td>95</td>
<td>Computing</td>
</tr>
<tr>
<td>Warp 8</td>
<td>11</td>
<td>Operands ready to go</td>
</tr>
</tbody>
</table>

Schedule at time k

CS6963 University of Utah
Scoreboarding Example

• Consider three separate instruction streams: warp1, warp3 and warp8

<table>
<thead>
<tr>
<th>Warp</th>
<th>Current Instruction</th>
<th>Instruction State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warp 1</td>
<td>42</td>
<td>Ready to write result</td>
</tr>
<tr>
<td>Warp 3</td>
<td>95</td>
<td>Computing</td>
</tr>
<tr>
<td>Warp 8</td>
<td>11</td>
<td>Computing</td>
</tr>
</tbody>
</table>

Schedule at time k+1

warp 8 instruction 11
warp 1 instruction 42
warp 3 instruction 95
warp 8 instruction 12
warp 3 instruction 96
t=k
t=k+1
t=k+2
t=l>k
t=l+1
Scoreboarding

- All register operands of all instructions in the Instruction Buffer are scoreboarded
 - Status becomes ready after the needed values are deposited
 - prevents hazards
 - cleared instructions are eligible for issue
- Decoupled Memory/Processor pipelines
 - any thread can continue to issue instructions until scoreboarding prevents issue
 - allows Memory/Processor ops to proceed in shadow of other waiting Memory/Processor ops

| Instruction: | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 1 | 2 | 3 | 4 | 7 | 8 | 1 | 2 | 1 | 2 | 3 | 4 |
|--------------|
| TB1 W1 |
| TB2 W1 |
| TB3 W1 |
| TB3 W2 |
| TB2 W1 |
| TB1 W1 |
| TB1 W2 |
| TB1 W3 |
| TB3 W2 |

TB = Thread Block, W = Warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
Memory Hardware
CUDA Device Memory Space: Review

- Each thread can:
 - R/W per-thread **registers**
 - R/W per-thread **local memory**
 - R/W per-block **shared memory**
 - R/W per-grid **global memory**
 - Read only per-grid **constant memory**
 - Read only per-grid **texture memory**

- The host can R/W **global, constant, and texture memories**
Parallel Memory Sharing

- **Local Memory:** per-thread
 - Private per thread
 - Auto variables, register spill
- **Shared Memory:** per-Block
 - Shared by threads of the same block
 - Inter-thread communication
- **Global Memory:** per-application
 - Shared by all threads
 - Inter-Grid communication
SM Memory Architecture

- Threads in a block share data & results
 - In Memory and Shared Memory
 - Synchronize at barrier instruction

- Per-Block Shared Memory Allocation
 - Keeps data close to processor
 - Minimize trips to global Memory
 - Shared Memory is dynamically allocated to blocks, one of the limiting resources

Courtesy: John Nicols, NVIDIA
Texture Memory

- Read only
- More closely related to graphics pipeline
- Small, but can be faster than global memory due to cache
 - More relaxed coalescing requirements
 - Optimized for 2D spatial locality
 - Can pack 4 8-bit ints into 1 float
 - Converts data to [0.0 .. 1.0] or [-1.0 .. 1.0] range
 - Automatic boundary handling

⇒ out of scope for now

See http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html if interested
SM Register File

- Register File (RF)
 - 32 KB (8K entries) for each SM in G80

- TEX pipe can also read/write RF
 - 2 SMs share 1 TEX in G80, 3 SMs per TEX in GTX 200
 - Related to graphics mode (out of scope)

- Load/Store pipe can also read/write RF

MAD: Multiply and Add unit
SFU: Super Function Unit - where more complex instructions are executed
Programmer View of Register File

- There are 8192 registers in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all blocks assigned to the SM
 - Once assigned to a block, the register is NOT accessible by threads in other blocks
 - Each thread in the same block only access registers assigned to itself

(This has changed but the example is still useful)
Matrix Multiplication Example

- If each Block has 16X16 threads and each thread uses 10 registers, how many threads can run on each SM?
 - Each block requires $10 \times 256 = 2560$ registers
 - $8192 = 3 \times 2560 + \text{change}$
 - So, three blocks can run on an SM as far as registers are concerned

- How about if each thread increases the use of registers by 1?
 - Each Block now requires $11 \times 256 = 2816$ registers
 - $8192 < 2816 \times 3$
 - Only two Blocks can run on an SM, \textit{1/3 reduction of parallelism}!!!
More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to compilers/programmers
 – One can run a smaller number of threads that require many registers each or a large number of threads that require few registers each
 • This allows for finer grain threading than traditional CPU threading models
 – The compiler can tradeoff between instruction-level parallelism and thread level parallelism
ILP vs. TLP Example

- Assume that a kernel has 256-thread Blocks, 4 independent instructions for each global memory load in the thread program, and each thread uses 10 registers, global loads take 200 cycles
 - 3 Blocks can run on each SM
- If a compiler can use one more register to change the dependence pattern so that 8 independent instructions exist for each global memory load
 - Only two can run on each SM
 - However, one only needs $200/(8*4) = 7$ Warps to tolerate the memory latency
 - Two blocks have 16 Warps. The performance can be actually higher!
Resource Allocation Example

(a) Pre-“optimization”

(b) Post-“optimization”

Increase in per-thread performance, but fewer threads:
Lower overall performance in this case
CUDA Occupancy Calculator

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 GPU Occupancy Data is displayed here and in the graphs:</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Active Threads per Multiprocessor</td>
</tr>
<tr>
<td>17</td>
<td>Active Warps per Multiprocessor</td>
</tr>
<tr>
<td>18</td>
<td>Active Thread Blocks per Multiprocessor</td>
</tr>
<tr>
<td>19</td>
<td>Occupancy of each Multiprocessor</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Limits for GPU Compute Capability:</td>
<td>1.3</td>
</tr>
<tr>
<td>23</td>
<td>Threads per Warp</td>
</tr>
<tr>
<td>24</td>
<td>Warps per Multiprocessor</td>
</tr>
<tr>
<td>25</td>
<td>Threads per Multiprocessor</td>
</tr>
<tr>
<td>26</td>
<td>Thread Blocks per Multiprocessor</td>
</tr>
<tr>
<td>27</td>
<td>Total # of 32-bit registers per Multiprocessor</td>
</tr>
<tr>
<td>28</td>
<td>Register allocation unit size</td>
</tr>
<tr>
<td>29</td>
<td>Register allocation granularity</td>
</tr>
<tr>
<td>30</td>
<td>Shared Memory per Multiprocessor (bytes)</td>
</tr>
<tr>
<td>31</td>
<td>Shared Memory Allocation unit size</td>
</tr>
<tr>
<td>32</td>
<td>Warp allocation granularity (for register allocation)</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation Per Thread Block</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Warps</td>
</tr>
<tr>
<td>36</td>
<td>Registers</td>
</tr>
<tr>
<td>37</td>
<td>Shared Memory</td>
</tr>
</tbody>
</table>

These data are used in computing the occupancy data in blue.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Thread Blocks Per Multiprocessor</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Limited by Max Warps / Blocks per Multiprocessor</td>
</tr>
<tr>
<td>42</td>
<td>Limited by Registers per Multiprocessor</td>
</tr>
<tr>
<td>43</td>
<td>Limited by Shared Memory per Multiprocessor</td>
</tr>
<tr>
<td>44</td>
<td>Thread Block Limit Per Multiprocessor highlighted</td>
</tr>
</tbody>
</table>
Memory Layout of a Matrix in C

```
M
```

```
M_0,0  M_1,0  M_2,0  M_3,0
M_0,1  M_1,1  M_2,1  M_3,1
M_0,2  M_1,2  M_2,2  M_3,2
M_0,3  M_1,3  M_2,3  M_3,3
```
Memory Coalescing*

- When accessing global memory, peak performance utilization occurs when all threads in a half warp access continuous memory locations.

![Diagram showing coalesced and not coalesced memory access](image)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
Memory Layout of a Matrix in C

Access direction in Kernel code

Time Period 1
\[T_1 \quad T_2 \quad T_3 \quad T_4 \]

Time Period 2
\[T_1 \quad T_2 \quad T_3 \quad T_4 \]

...
Memory Layout of a Matrix in C

Access direction in Kernel code

Time Period 1

Time Period 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
Matrix Multiplication

```c
__global__ void MatrixMulKernel(float* Md, float*Nd, float* Pd, int Width)
{
  __shared__ __float Mds[TILE_WIDTH][TILE_WIDTH];
  __shared__ __float Nds[TILE_WIDTH][TILE_WIDTH];

  int bx = blockIdx.x; int by = blockIdx.y;
  int tx = threadIdx.x; int ty = threadIdx.y;

  // Identify the row and column of the Pd element to work on
  int Row = by * TILE_WIDTH + ty;
  int Col = bx * TILE_WIDTH + tx;

  float Pvalue = 0;
  // Loop over the Md and Nd tiles required to compute the Pd element
  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

    // Collaborative loading of Md and Nd tiles into shared memory
    Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
    Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
    __syncthreads();

    for (int k = 0; k < TILE_WIDTH; ++k)
      Pvalue += Mds[ty][k] * Nds[k][tx];
    __syncthreads();

  }
  Pd[Row*Width + Col] = Pvalue;
}
```

Why this works:
- threads in warp have same ty
- adjacent threads read adjacent elements from memory
* Coalescing since 2013

- GPUs now have cache

=> Coalescing is less important as it is done by the hardware

- Make sure you have enough cache available for each warp

- There may still be some loss of performance (20-50%) due to uncoalesced access
Cache (Compute Capability 3.x)

- L1 cache for each multiprocessor
- L2 cache shared by all multiprocessors
- Both are used to cache accesses to local or global memory, including temporary register spills
- Cache behavior (e.g., whether reads are cached in both L1 and L2 or in L2 only) can be partially configured
Configuring the Cache

• The same on-chip memory is used for both L1 and shared memory. It can be configured as:
 – 48 KB of shared memory and 16 KB of L1 cache
 – 16 KB of shared memory and 48 KB of L1 cache
 – 32 KB of shared memory and 32 KB of L1 cache

• using `cudaFuncSetCacheConfig()`
Cache Preferences

// Host code

// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferEqual: shared memory is 32 KB
// cudaFuncCachePreferL1: shared memory is 16 KB
// cudaFuncCachePreferNone: no preference

cudaFuncSetCacheConfig(MyKernel,
cudaFuncCachePreferShared);
Cache Preferences

• The default cache configuration is "prefer none"
• If a kernel has no preference, then it will default to the preference of the current CPU thread/context
• If the current thread/context also has no preference, then most recent cache configuration will be used
 – unless a different cache configuration is required to launch the kernel (e.g., due to shared memory requirements)
• The initial configuration is 48 KB of shared memory and 16 KB of L1 cache
Constants

- Immediate address constants (#define)
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a warp
 - Extremely efficient way of accessing a value that is common for all threads in a block!

```c
// specify as global variable
__device__ __constant__ float gpuGamma[2];
// copy gamma value to constant device memory
cudaMemcpyToSymbol(gpuGamma, &gamma, sizeof(float));
...
// access as global variable in kernel
res = gpuGamma[0] * threadIdx.x;
```
Shared Memory

- Each SM has 16 or more KB of Shared Memory
 - 16 banks of 32-bit words
 - 64-bit access is also supported now
- CUDA uses Shared Memory as shared storage visible to all threads in a thread block
 - read and write access
Parallel Memory Architecture

• In a parallel machine, many threads access memory
 – Therefore, memory is divided into banks
 – Essential to achieve high bandwidth

• Each bank can service one address per cycle
 – A memory can service as many simultaneous accesses as it has banks

• Multiple simultaneous accesses to a bank result in a bank conflict
 – Conflicting accesses are serialized
Bank Addressing Examples

• No Bank Conflicts
 – Linear addressing
 stride == 1

• No Bank Conflicts
 – Random 1:1 Permutation
Bank Addressing Examples

- 2-way Bank Conflicts

- 8-way Bank Conflicts
How Addresses Map to Banks on G80

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp
Shared Memory Bank Conflicts

- Shared memory is as fast as registers if there are no bank conflicts

- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp access an identical address, there is no bank conflict (broadcast)

- The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank
Linear Addressing

- Given:

  ```
  __shared__ float shared[256];
  float foo =
  shared[baseIndex + s * threadIdx.x];
  ```

- This is only bank-conflict-free if `s` shares no common factors with the number of banks
 - 16 on G80, so `s` must be odd
Compute Capability 3.x

- Left: Linear addressing with a stride of one 32-bit word (no bank conflict)
- Middle: Linear addressing with a stride of two 32-bit words (no bank conflict)
- Right: Linear addressing with a stride of three 32-bit words (no bank conflict)
- More flexible definition of alignment within banks enables last two examples
Compute Capability 3.x

- Left: Conflict-free access via random permutation
- Middle: Conflict-free access since threads 3, 4, 6, 7, and 9 access the same word within bank 5
- Right: Conflict-free broadcast access (threads access the same word within a bank)
Control Flow
Control Flow Instructions

• Main performance concern with branching is divergence
 – Threads within a single warp take different paths
 – Different execution paths are serialized on GPU
 • The control paths taken by the threads in a warp are traversed one at a time until there is no more.

• A common case: avoid divergence when branch condition is a function of thread ID
 – Example with divergence:
 • If (threadIdx.x > 2) { }
 • This creates two different control paths for threads in a block
 • Branch granularity < warp size; threads 0, 1 and 2 follow different path than the rest of the threads in the first warp
 – Example without divergence:
 • If (threadIdx.x / WARP_SIZE > 2) { }
 • Also creates two different control paths for threads in a block
 • Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path
Parallel Reduction

- Given an array of values, “reduce” them to a single value in parallel
- Examples
 - Sum reduction: sum of all values in the array
 - Max reduction: maximum of all values in the array
- Typically parallel implementation:
 - Recursively halve # threads, add two values per thread
 - Takes log(n) steps for n elements, requires n/2 threads
A Vector Reduction Example

• Assume an in-place reduction using shared memory
 – The original vector is in device global memory
 – The shared memory is used to hold a partial sum vector
 – Each iteration brings the partial sum vector closer to the final sum
 – The final solution will be in element 0
A simple implementation

• Assume we have already loaded array into

```c
__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;
     stride < blockDim.x; stride *= 2)
{
    __syncthreads();
    if (t % (2*stride) == 0)
        partialSum[t] += partialSum[t+stride];
}
```
Vector Reduction with Branch Divergence

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

Array elements

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
Some Observations

• In each iteration, two control flow paths will be sequentially traversed for each warp
 – Threads that perform addition and threads that do not
 – Threads that do not perform addition may cost extra cycles depending on the implementation of divergence

• No more than half of threads will be executing at any time
 – All odd index threads are disabled right from the beginning!
 – On average, less than ¼ of the threads will be activated for all warps over time.
 – After the 5th iteration, entire warps in each block will be disabled, poor resource utilization but no divergence
 • This can go on for a while, up to 4 more iterations (512/32=16= 2^4), where each iteration only has one thread activated until all warps retire

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
Shortcomings of the implementation

• Assume we have already loaded array into

```c
__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;
     stride < blockDim.x; stride *= 2)
{
    __syncthreads();
    if (t % (2*stride) == 0)
        partialSum[t] += partialSum[t+stride];
}
```

BAD: Divergence due to interleaved branch decisions
A better implementation

• Assume we have already loaded array into

```c
__shared__ float partialSum[]
```

```c
unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x/2;
    stride > 1; stride >>= 1)
{
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t+stride];
}
```
No Divergence until <= 16 sub-sums
Prefetching and Instruction Mix
Prefetching

• One could double buffer the computation, getting better instruction mix within each thread
 – This is classic software pipelining in ILP compilers

```
Loop {
    Load current tile to shared memory
    syncthreads()
    Compute current tile
    syncthreads()
}

Load next tile from global memory

Loop {
    Deposit current tile to shared memory
    syncthreads()
    Load next tile from global memory
    Compute current tile
    syncthreads()
}
```
Prefetch

- Deposit blue tile from register into shared memory
- Syncthreads
- Load orange tile into register
- Compute Blue tile
- Deposit orange tile into shared memory
-
Instruction Mix Considerations

for (int k = 0; k < BLOCK_SIZE; ++k)
 Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and address calculation

Loop unrolling can help. (Be aware that any local arrays used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + ...
 Ms[ty][k+15] * Ns[k+15][tx];
Unrolling

(b) Tiled Version

Ctemp = 0;
for (...) {
 __shared__ float As[16][16];
 __shared__ float Bs[16][16];

 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;
 __syncthreads();

 // compute results for tile
 for (i = 0; i < 16; i++)
 {
 Ctemp += As[ty][i] * Bs[i][tx];
 }
 __syncthreads();
}
C[indexC] = Ctemp;

(c) Unrolled Version

Ctemp = 0;
for (...) {
 __shared__ float As[16][16];
 __shared__ float Bs[16][16];

 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;
 __syncthreads();

 // compute results for tile
 Ctemp +=
 As[ty][0] * Bs[0][tx];
 ...
 Ctemp +=
 As[ty][15] * Bs[15][tx];
 __syncthreads();
}
C[indexC] = Ctemp;