Representation Independence, Confinement and Access Control

Anindya Banerjee and David Naumann

ab@cis.ksu.edu and naumann@cs.stevens-tech.edu

Kansas State University and Stevens Institute of Technology
public class Class {
 private Identity[] signers; //authenticated
 public Identity[] getSigners() {
 return signers;
 }
...
}
public class System {
 public Identity[] getKnownSigners() { ... }
 ...
}
class Bad {
 void bad() {
 Identity[] s = getSigners(); //leak
 s[0] = System.getKnownSigners()[0];
 doPrivileged("something bad");
 }
 ...
}
Representation independence

class A {
 private Boolean g; // rep object
 unit init(){
 g := new Boolean();
 g.set(~true);
 }
 unit setg(bool x){
 g.set(~x);
 }
 bool getg(){
 return ~g.get();
 }
}

Example: abstraction A using representation Boolean to hold current value (or its negation).

Information hiding: type safety, visibility and scope rules ensure that clients are not dependent on encapsulated representation.

z := new A(); z.setg(true); b := z.getg();
class A {
 private Boolean g; // rep object
 unit init() { g := new Boolean();
 g.set(~true); }
 unit setg(bool x) { g.set(~x); }
 bool getg() { return ~g.get(); }
 Object bad() { return g; }
}

Client behavior depends on representation:

z := new A(); w := (Boolean) z.bad();
if (w.get()) skip else diverge;
Representation exposure

class A {
 private Boolean g; // rep object
 unit init() { g := new Boolean();
 // g.set(~true); }
 unit setg(bool x) { g.set(~x); }
 bool getg() { return ~g.get(); }
 Object bad() { return g; }
}

Client behavior depends on representation:
 z := new A(); w := (Boolean) z.bad();
 if (w.get()) skip else diverge;

Leaks also allow clients to violate invariants, e.g.,
“signers have all been authenticated for this class”.
Contribution

Formalization of pointer confinement and proof that it ensures representation independence, for rich fragment of Java.

<table>
<thead>
<tr>
<th>Client objects</th>
<th>Interface objects</th>
<th>Representations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>Boole</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>Boole</td>
</tr>
</tbody>
</table>

allowed

↓

disallowed
Contribution

Formalization of pointer confinement and proof that it ensures representation independence, for rich fragment of Java.

- Justify *component replacement*: in software engineering (e.g., optimizing transformations, refactoring) and in theory (e.g., equivalence of lazy and eager access control).

- *Modular verification*: reason about component in terms of abstract interface spec.

- Secure *information flow* and other program analyses based on abstract interpretation.
Language

- pointers to mutable objects (but no ptr. arithmetic)
- subclassing, dynamic dispatch, type-cast and -test
- class-based visibility control
- recursive types and methods
- privilege-based access control

Major omissions: exceptions, threads, class loading and reflection.
Language

- pointers to mutable objects (but no ptr. arithmetic)
- subclassing, dynamic dispatch, type-cast and -test
- class-based visibility control
- recursive types and methods
- privilege-based access control

Straightforward compositional semantics:
- object state contains locations and prim. vals.
- heap maps locations to object states
- methods bound to classes, not objects
- commands denote functions

\[
\text{method-meanings} \rightarrow \text{envir} \rightarrow \text{heap} \rightarrow (\text{envir} \times \text{heap})^\bot
\]
Heap confinement for A, Rep

$\text{conf } h$ iff h has admissible partition

$h = h_{\text{Out}} \ast h_{A_1} \ast h_{\text{Rep}_1} \ast \ldots \ast h_{A_n} \ast h_{\text{Rep}_n}$ with $h_{\text{Out}} \not\leadsto h_{\text{Rep}_k}, \quad h_{\text{Rep}_k} \not\leadsto h_{\text{Out}}, \quad \text{and}$

$h_{A_k} \ast h_{\text{Rep}_k} \not\leadsto h_{A_j} \ast h_{\text{Rep}_j}$ for $k \neq j$
Confinement

- Commands and method meanings preserve heap confinement; corresponding conditions on expressions and environments.
Confinement

- Commands and method meanings *preserve heap confinement*; corresponding conditions on expressions and environments.
- *Semantic definition*; static analysis separate concern.
Confinement

- Commands and method meanings preserve heap confinement; corresponding conditions on expressions and environments.

- **Semantic definition**; static analysis separate concern.

- Signatures \((C, (x : T) \rightarrow T)\) confined:
 - \(C \leq A\) implies \(\overline{T} \not\subseteq Rep \land \overline{T} \not\subseteq A\)
 - \(C \not\subseteq A \land C \not\subseteq Rep\) implies \(\overline{T} \not\subseteq Rep\)

Methods not satisfying these conditions would violate heap confinement or ignore their arg’s.
Confinement

- Commands and method meanings *preserve heap confinement*; corresponding conditions on expressions and environments.

- **Semantic definition**; static analysis separate concern.

- Signatures \((C, (\overline{x}: \overline{T}) \rightarrow T)\) confined:
 - \(C \leq A\) implies \(\overline{T} \not\equiv Rep \land \overline{T} \not\equiv A\)
 - \(C \not\equiv A \land C \not\equiv Rep\) implies \(\overline{T} \not\equiv Rep\)

 Methods not satisfying these conditions would violate heap confinement or ignore their arg’s.

- Semantic confinement can be ensured by simple syntactic checks similar to ones in literature.
Simulation

Basic simulation

Classes A, Rep, Rep' and confined class table CT with

$CT(A) = \text{class } A \text{ extends } B \{ \overline{T} \overline{g}; \overline{M} \}$

$CT'(A) = \text{class } A \text{ extends } B \{ \overline{T}' \overline{g}'; \overline{M}' \}$
Basic simulation

Classes $A, \text{Rep}, \text{Rep}'$ and confined class table CT with

$CT(A) = \text{class } A \text{ extends } B \{ \overline{T} \, \overline{g}; \overline{M} \}$

$CT'(A) = \text{class } A \text{ extends } B \{ \overline{T}' \, \overline{g}'; \overline{M}' \}$

Relation $R \subseteq [\text{Heap}] \times [\text{Heap}]'$ for a single pair of A objects at same location ℓ.

$h = hA \ast h\text{Rep}$

$h' = hA' \ast h\text{Rep}'$

![Diagram](image-url)
Simulation

Basic simulation

Classes $A, \text{Rep}, \text{Rep}'$ and confined class table CT with

$CT(A) = \text{class } A \text{ extends } B \{ \overline{Tg}; \overline{M} \}$

$CT'(A) = \text{class } A \text{ extends } B \{ \overline{T'}g'; \overline{M}' \}$

Relation $R \subseteq [Heap] \times [Heap]'$ for a single pair of A objects at same location ℓ.

$h = hA \ast h\text{Rep}$

$h' = hA' \ast h\text{Rep}'$

Induced relations $\mathcal{R} \theta$

- $\mathcal{R} T d \ d' \iff d = d'$ (primitives and client-visible loc’s)
- $\mathcal{R} \text{Heap} h \ h' \iff \text{partition with } R (hA_k \ast h\text{Rep}_k) (hA'_k \ast h\text{Rep}'_k)$
Main results

Abstraction theorem:
Given basic simulation for confined CT, CT'. If every method body of A preserves $R (envir \times Heap)_\bot$ then so does every command.

(Commands in both clients and subclasses of A.)
Main results

Abstraction theorem:
Given basic simulation for confined \(CT, CT' \). If every method body of \(A \) preserves \(\mathcal{R} (envir \times Heap)_\perp \) then so does every command.

(Commands in both clients and subclasses of \(A \).)

Identity extension lemma:
Suppose \(\mathcal{R} (envir \times Heap) (\eta, h) (\eta', h') \). Then

\[
\text{garbage-collect}((\text{rng } \eta), h) = \text{garbage-collect}((\text{rng } \eta'), h'),
\]

if these heaps are both \(A \)-free.

(Can also express in terms of heap visible to clients.)
Access control

Access matrix: $\mathcal{A}(\text{user}) = \{p\}$ and $\mathcal{A}(\text{sys}) = \{p, w\}$.

class Sys signer sys {
 unit writepass(String x) {
 check w; write(x, "passfile");
 }
 unit passwd(String x) {
 check p; dopriv w in writepass(x);
 }
}

class User signer user {
 Sys s ...
 unit use() { dopriv p in s.passwd("me");
 }
 unit try() { dopriv w in s.writepass("me");
 }
}
Conclusion

Contribution: analysis of information hiding for pointers, subclassing, etc., using simple, extensible denotational semantics.

Ongoing and future work:

- polymorphism (essential to avoid Object)
- static analysis and transformation for access control (proved Fournet&Gordon [POPL02] equiv’s in a denotational semantics for the funct. lang.)
- information flow
- static checking of confinement (sans annotation)
- proof rules for simulation (A’s methods)
- other confinement disciplines (e.g., read-only)
Related work

This paper, with other proof cases: http://www.cs.stevens-tech.edu/~naumann/absApp.ps

A static analysis for instance-based confinement in Java: http://.../static.ps

A simple semantics and static analysis for Java security: http://.../tr2001.ps

D. Clarke, J. Noble, J. Potter: Simple ownership types for object containment, ECOOP’01.

J. Reynolds: Types, abstraction, and parametric polymorphism, Info. Processing ’83

Appendix: static confinement

Signatures: \(C \leq \text{Rep} \Rightarrow U \leq A \lor U \leq \text{Rep} \) for all \(U \in \overline{T} \)

Phrases:

\[
\begin{align*}
C \leq A & \Rightarrow U \not\subseteq A \\
\Gamma; \ C \triangleright e : U & \Rightarrow \Gamma; \ C \triangleright x.f := e \\
C \not\subseteq A & \Rightarrow B \not\subseteq \text{Rep} \\
C \leq A & \Rightarrow B \not\subseteq A \\
\Gamma; \ C \triangleright x := \text{new } B() & \Rightarrow \Gamma; \ C \triangleright x := \text{new } B()
\end{align*}
\]

\[
\begin{align*}
\text{mtype}(m, D) & = (\overline{x} : \overline{T}) \rightarrow T \\
C \leq A & \Rightarrow T \not\subseteq A \\
\Gamma; \ C \triangleright e : D \quad \Gamma; \ C \triangleright \overline{e} : \overline{U} & \Rightarrow \Gamma; \ C \triangleright e.m(\overline{e}) : T
\end{align*}
\]

These suffice for semantic condition stronger than needed for abstraction theorem.
Appendix: parametricity

Simulation is made unsound by rep exposure and also by non-parametric constructs like unchecked casts, &x < &y, sizeof(A), etc. which Java lacks.

Our results hold for any parametric allocator fresh:
- \(\text{loctype}(\text{fresh}(C, h)) = C \) and \(\text{fresh}(C, h) \notin \text{dom } h \)
- \(\text{dom } h_1 \cap \text{locs } C = \text{dom } h_2 \cap \text{locs } C \Rightarrow \text{fresh}(C, h_1) = \text{fresh}(C, h_2) \)

Equal heaps aren’t enough for some equivalences:
\[
\begin{align*}
x &:= \text{new } C(); \\
y &:= \text{new } C(); \\
y &:= \text{new } C(); \\
x &:= \text{new } C();
\end{align*}
\]
So take heaps up to isomorphism, in def of equivalence or in model. Or model with non-det. allocator.
var $x := 0$ in $P(x := x + 2);\ if\ even(x)\ diverge\ else\ skip$

diverge

O-O version with closure as explicit object (with method $x := x + 2$ or $skip$).

Holds because locals \neq objects and name spaces flat. Need confinement if the integer is itself an object.
Appendix: semantic domains

\[\theta ::= T \mid \Gamma \mid C \text{ state} \mid \text{Heap} \mid (C, (\overline{x} : \overline{T}) \rightarrow T) \mid MEnv \]
Appendix: semantic domains

\[\theta ::= T | \Gamma | C \text{ state} | \text{Heap} | (C, (\overline{x} : \overline{T}) \to T) | \text{MEnv} \]

\[\llbracket \text{bool} \rrbracket = \{T, F\} \]
\[\llbracket C \rrbracket = \{\text{nil}\} \cup \{\ell \in \text{Loc} | \text{loctype } \ell \leq C\} \]

\(\eta \in [\Gamma] \) maps each identifier \(x \) to its value \(\eta x \in [\Gamma x] \)

\(s \in [C \text{ state}] \) maps (declared\&inherited) fields to values

\(h \in [\text{Heap}] \) is partial function on \(\text{Loc} \), with \(h\ell \in \llbracket (\text{loctype } \ell) \text{ state} \rrbracket \)
Appendix: semantic domains

\[\theta ::= T \mid \Gamma \mid C \text{ state} \mid \text{Heap} \mid (C, (\overline{x} : \overline{T}) \rightarrow T) \mid MEnv \]

\[[\text{bool}] = \{T, F\} \]
\[[C] = \{\text{nil}\} \cup \{\ell \in \text{Loc} \mid \text{loctype} \ell \leq C\} \]

\(\eta \in [\Gamma] \) maps each identifier \(x \) to its value \(\eta x \in [\Gamma x] \)

\(s \in [C \text{ state}] \) maps (declared\&inherited) fields to values

\(h \in [\text{Heap}] \) is partial function on \(\text{Loc} \), with \(h\ell \in [((\text{loctype} \ell) \text{ state})] \)

\[[C, (\overline{x} : \overline{T}) \rightarrow T] = [\overline{x} : \overline{T}, \text{this} : C] \rightarrow [\text{Heap}] \rightarrow ([T] \times [\text{Heap}]) \perp \]

\(\mu \in [MEnv] \) maps each \(C, m \) to \(\mu Cm \in [C, (\overline{x} : \overline{T}) \rightarrow T] \).
Appendix: semantic domains

\[\theta ::= T \mid \Gamma \mid C \text{ state} \mid \text{Heap} \mid (C, (\overline{x} : \overline{T}) \rightarrow T) \mid M\text{Env} \]

\[[\text{bool}] = \{T, F\}\]
\[[C] = \{\text{nil}\} \cup \{\ell \in \text{Loc} \mid \text{loctype } \ell \leq C\}\]

\(\eta \in [\Gamma]\) maps each identifier \(x\) to its value \(\eta x \in [\Gamma x]\)
\(s \in [C \text{ state}]\) maps (declared\&inherited) fields to values
\(h \in [\text{Heap}]\) is partial function on \(\text{Loc}\), with \(h\ell \in [(\text{loctype } \ell) \text{ state}]\)

\[[C, (\overline{x} : \overline{T}) \rightarrow T] = [\overline{x} : \overline{T}, \text{this} : C] \rightarrow [\text{Heap}] \rightarrow ([\Gamma] \times [\text{Heap}])_{\perp}\]

\(\mu \in [M\text{Env}]\) maps each \(C, \text{m}\) to \(\mu C\text{m} \in [C, (\overline{x} : \overline{T}) \rightarrow T]\).

\[[\Gamma; C \vdash e : T] \in [M\text{Env}] \rightarrow [\Gamma] \rightarrow [\text{Heap}] \rightarrow [T]_{\perp}\]
\[[\Gamma; C \vdash S : \text{com}] \in [M\text{Env}] \rightarrow [\Gamma] \rightarrow [\text{Heap}] \rightarrow ([\Gamma] \times [\text{Heap}])_{\perp}\]