
Observational Purity and Encapsulation

David A. Naumann 1

Stevens Institute of Technology

Castle Point on Hudson, Hoboken, NJ 07030 USA

Abstract

Practical specification languages for imperative and object-oriented programs, such
as JML, Eiffel, and Spec#, allow the use of program expressions including method
calls in specification formulas. For coherent semantics of specifications, and to avoid
anomalies with runtime assertion checking, expressions in specifications and asser-
tions are typically required to be weakly pure in the sense that their evaluation has
no effect on the state of preexisting objects. For specification of large systems using
standard libraries this restriction is impractical: it disallows many standard methods
that mutate state for purposes such as caching or lazy initialization. Calls of such
methods can sensibly be used for specifications and annotations in contexts where
their effects cannot be observed. This paper formalizes a notion of observational
purity, justifies the use of weakly and observationally pure methods in specifica-
tions, and shows that a method is observationally pure if it simulates a weakly pure
method.

Key words: specification and verification, information hiding, benevolent side
effects

1 Introduction

Consider the correctness statement {y + 1 > 0} x : = y + 1 {x > 0}. The
expression y + 1 plays two different roles here: In the precondition y + 1 > 0
it is a term in a formula, which has a standard meaning in mathematical
logic. In the command x : = y + 1 it is an expression to be evaluated during
program execution. The axiom of assignment successfully blurs the distinction,
substituting a program expression in a formula. For reasoning about + in the
formula, soundness demands rules that are consistent with + as an executable

1 Partially supported by the National Science Foundation (CCR-0208984, CCF-
0429894) and Microsoft Research.

Preprint submitted to Elsevier Science 4 June 2006

operation —for this reason, the paper in which Hoare (1969) introduced his
logic begins with a discussion of computer arithmetic. The logic also demands
that expressions in assignments and branch conditions have no side effects
—surely side effects have no place in logical formulae?

In the many theoretical and practical works that followed Hoare’s paper the
prohibition against side effects has typically been enforced by distinguishing
between mathematical primitives like + and programmed procedures. The
latter are considered impure; they are not allowed in specifications or other
assertions. The influential book by Liskov and Guttag (1986) and the Larch
projects (Guttag and Horning, 1993), for example, go to considerable lengths
to maintain the distinction. Recently, however, in the context of object ori-
ented languages there has been a trend to loosen the distinction, allowing
assertions that invoke procedures, subject to purity conditions. For practical
reasons, purity is relaxed to allow allocation of new objects (Leavens et al.,
2003) and even benevolent side effects (Barnett et al., 2004b).

The purpose of this paper is to provide a theoretical foundation for these
relaxed notions of purity and to elucidate ways to check purity. Notions of pu-
rity have other applications, e.g., in program transformation, but we confine
attention to program specification and verification. This problem is particu-
larly pressing for object-oriented implementation languages where effects are
ubiquitous and practical sound reasoning is difficult to achieve due to several
problematic language features.

Eiffel (Meyer, 1997), JML (Leavens et al., 2003), Spec# (Barnett et al., 2005)
and perhaps other specification systems for Java-like languages attempt to
make verification tools more practical by using relatively little specialized
notation. Mathematical functions are provided in the form of library proce-
dures. 2 Owing to the limited type structure of the programming language,
a mathematical entity —even as simple as a pair of integers— usually needs
to be encoded as a heap-allocated object. For this reason it is necessary to
allow procedures that are weakly pure, meaning that they may allocate new
objects though not mutate existing ones. For example, JML allows a proce-
dure to be labelled as pure and prescribes a static check that there are no field
updates. The idea is that freshly allocated objects are only used in the course
of evaluating the assertion and can be ignored afterwards.

Within the evaluation of an assertion, it is not at all clear that allocation
effects can be ignored. The key example is the equality test

new C == new C

2 One should say “methods”, but dynamic dispatch and inheritance are not relevant
in this paper.

2

class Cell {
public val : int;
proc pos(c : Cell) :bool { return c.val > 0; } }

class D0 {
private f , arg , farg : int;
proc pureProd(s : D0, n : int) : Cell {

x : Cell : = new Cell ; x .val : = s.f ∗ n; return x ; }
proc memoProd(s : D0, n : int) : Cell {

x : Cell : = new Cell ;
if n = 0 then x .val : = 0; return x ;
elseif s.arg 6= n then s.arg : = n; s.farg : = s.f ∗ n; end;
x .val : = s.farg ; return x ; }

proc get(s : D0) : int { return s.f }
proc set(s : D0, v : int) {s.f : = v ; s.arg : = 0; } }

Fig. 1. Example program in simple language with class-bound procedures. It main-
tains an invariant: o.arg 6= 0 implies o.farg = o.f ∗ o.arg for all D0-objects o.

which is always false in executed code since two fresh objects are distinct;
it could be true if the effect of the first new were to be discarded. Several
solutions are possible, e.g., Darvas and Müller (2006) introduce an explicit
parameter for the heap and thread its updates through the formula.

In this paper we focus on the problem of effects at the boundary between
assertions and programs, not within assertions. But we go beyond weak pu-
rity. Many software libraries include procedures that one would expect to
be pure, but which in fact mutate preexisting objects for purposes such as
lazy initialization, memoization, and other optimizations. A standard opti-
mization example is the move-to-front heuristic for a set represented by an
unordered list. An example of lazy initialization is found in the implementa-
tion of String.hashCode in Java. The solution adopted in JML is to duplicate
such library procedures with pure ones to be used in specifications. But this
results in the proliferation of redundant libraries and it undercuts the goal
of making specifications seem more familiar to ordinary programmers. An al-
ternative is to liberalize the notion of purity even further, to observational

purity which allows updates of preexisting objects so long as these effects are
encapsulated in a suitable sense.

In the sequel a simple but representative example is used; see Figure 1.
Instances of class D0 hold an integer in field f . Procedures pureProd and
memoProd multiply f by parameter n. The product is returned in the val

field of a Cell object, to illustrate weak purity. To illustrate observational pu-
rity, the program memoizes a product f ∗ arg in field farg . In the context of
some class B and, say, a procedure with parameters d : D0 and i : int, one
might find expression pos(pureProd(d , i)) in a specification or intermediate

3

assertion. An argument for allowing this is that, although it has an effect on
the heap, it changes no preexisting objects and thus cannot interfere with the
meaning of other terms in the asserted formula. Another argument for allowing
it is that one could turn runtime assertion checking on or off without affecting
the outcome from the program: the fresh object returned by pureProd is ex-
amined in evaluating the asserted formula but then discarded. This could have
an effect, e.g., via out-of-memory condition; or via pointer arithmetic because
it affects where the next allocation takes place. But for many purposes none
of these sorts of observation are of interest. It is under such idealization that
our results are of interest.

Hoare (1972) noted that a procedure specified to have no effect may be allowed
to have benevolent side effects, i.e., effects on the internal representation and
which do not affect the abstract value represented. The justification relies
on encapsulation: behavior of a client of an abstraction is supposed to be
independent from the representation of the abstraction. Benevolent side effects
within a program need no special consideration: they are allowed simply in
virtue of the use of abstractions in specification (and suitable interpretation
of modifies specifications (Liskov and Guttag, 1986)). Our contribution is to
treat effects in specifications and other forms of assertions. This also justifies
use of the naive axiom of assignment where the assigned expression includes
procedure calls. To this end we adapt the notion of simulation, the standard
technique for proving equivalence of implementations that differ in their data
representation. In this way we obtain a sound and general theory without the
need to prove the hardest of the results from scratch. Unlike the work cited
above, we address encapsulation in the presence of shared mutable objects.

In order to treat weak purity, we develop a notion of program equivalence
that is insensitive to garbage. This is used to give a rigorous justification of
weakly pure expressions in specifications, which had not appeared in the lit-
erature. We also make precise the necessary restrictions on specifications; for
example, to disallow (∃o • allocated(o) ∧ o.type = C) which is sensitive to
allocation. Equivalence then serves as basis for a suitable notion of simula-
tion with which we justify observationally pure expressions in specifications.
Our formulation is compatible with extant encapsulation systems for spe-
cific object-oriented languages, such as Ownership Types (Clarke et al., 2001;
Clarke and Drossopoulou, 2002) and assertion-based ownership (Barnett et al.,
2004a).

A conservative static analysis for weak purity is easy: check for complete ab-
sence of assignments and field updates (except initializers). To admit cases in
which new objects are repeatedly updated, e.g., in a temporary data structure,
pointer analysis can be used (Sălcianu and Rinard, 2004).

For checking observational purity, our theory supports two techniques. One

4

technique is to check the property directly, for a special case that can be re-
duced to “visible indistinguishability” plus an object invariant. Then reasoning
about invariants can be combined with a static analysis developed for secure
information flow. This is discussed in Sections 5.3 and 6. The other technique
exploits the fact that simulation can be used to prove equivalence. It can be
considered to be the main result of the paper: a procedure is observationally
pure if it simulates one that is weakly pure in the sense of allowing allocation
of new objects but no mutation of preexisting ones (Section 5.2). This result
means one can dispense with the notion of observational purity per se.

Consider now the hazards of effects in assertions. For runtime assertion check-
ing, a straightforward implementation executes the asserted expression and,
say, throws a special exception if the assertion does not evaluate to true. Thus
execution of the fragment assert Q ; S from some initial state results in execu-
tion of S in a state different from the initial one, if Q has effects. But runtime
assertion checking is typically used as a means for testing; in production runs
of the program, assertion checking may well be omitted for reasons of perfor-
mance. So we would like to restrict effects so that “assert Q” is equivalent to
“skip”.

Static verification of a partial correctness assertion {P}S{Q} connects exe-
cutions of S with predicates P ,Q on initial and final states. How is P to be
interpreted as a predicate, if the semantics of a procedure it calls has an effect?
A simple answer is to ignore the effect: a state satisfies P if execution of P re-
turns true, regardless of what else it does. Clearly this does not match runtime
checking. Moreover, automated verifiers sometimes encode the partial correct-
ness condition in the form {true}S ′{true} where S ′ is assume P ; S ; assert Q ,
thus embedding the specification in the program itself. Further rewriting may
be done, e.g., transformation to single assignment form in order to improve
performance of a particular theorem prover. Such transformations could make
it difficult to ignore effects in P or Q .

In each scenario, inconsistencies are avoided so long as “assert Q” is equiv-
alent to “skip”. (We omit discussion of assume since it is very similar to
assert.) As a simple and general way to justify the use of procedure calls in
specifications, we investigate conditions under which the equivalence holds.
The notion of equivalence must be compositional, i.e., a congruence, and
correctness-preserving. Our account addresses partial correctness which suf-
fices to illustrate the core ideas and difficulties. In the conclusion we describe
how the approach can be adapted to total correctness.

Weak purity is a property of a procedure in isolation. Observational purity is
a property of a class (or module) in which the effects of the observationally
pure procedure are encapsulated. Procedure memoProd in Figure 1 is obser-
vationally pure, but this depends on cooperation by the other procedures,

5

which neither interfere with the cache nor expose it. Moveover, memoProd is
observationally pure outside its declaring class D0, meaning that if it occurs
in Q then assert Q is equivalent to skip only in the context of a class other
than D0. However, our results also account for using Q in the specification
of procedures of D0, e.g., if the example class D0 included another procedure
that mentioned memoProd in its specification. This is discussed at the start
of Section 5.2.

Overview. Section 2 formalizes a simple language sufficient to illustrate the
ideas. Section 3 defines weak purity. A notion of equivalence is defined and
justified, such that assert Q is equivalent to skip for weakly pure Q . Section 4
adds visibility to the language in order to formalize observational purity. It is
shown that assert Q is equivalent to skip for observationally pure Q , but for
a notion of visible equivalence that is not a congruence. Section 5 generalizes
equivalence to simulations, which are congruences. Building on the results of
Sections 3 and 4, it shows that if Q simulates some weakly pure term then
assert Q is equivalent to skip in any context. Section 6 concludes.

This paper is revised and extended from the conference version (Naumann,
2005). It includes full proofs and more thorough discussion of related work, as
well as expository changes including adoption of the term “weak purity” for
what had been called strong purity.

Notation. We write f v for application of function f to v . Application as-
sociates to the left and binds more tightly than other binary operators. For
subset X of the domain of f , we write X / f for the restriction of f to X .
And v /−f denotes f with v removed from its domain. We write [f | v 7→u] for
overriding or extending f to map v to u. Relational operators like ∼ bind less
tightly than others such as /, e.g., dom h /k ∼ h is parsed as ((dom h)/k) ∼ h.
The product of relations α, β is written α · β.

2 Illustrative language

To formalize our results with minimum fuss and maximum perspecuity, we
consider a simple procedural language with dynamically allocated mutable
objects. The syntax is given in Table 1. Note that there is no syntactic dis-
tinction between expressions and commands. The short word term is used for
both. 3

3 Language theorists should note that a reverse terminology is sometimes used,
where “terms” are the effect-free “expressions”.

6

C ,D ∈ ClassName x , y ∈ VariableName

p ∈ ProcedureName f ∈ FieldName

M : : = assert M

| x | x : = M read, write local variable
| M .f | x .f : = M read, write field of heap object
| new C reference to freshly allocated object of class C

| p(M) invoke procedure p on argument M

| M = M | null pointer equality test, the null pointer
| var x in M local block
| skip | M ;M | if M then M else M | while M do M

Table 1
Grammar of effectful terms, omitting arithmetic primitives etc.

The language is designed to streamline the formalism as much as possible and
of course to encompass side effects of expressions in assertions. Thus it includes
some very odd programs and some which are idiomatic in the C language but
nonetheless unattractive from a reasoning perspective. For practical purposes
it is the effects of new and procedure invocation that matter. We see little
interest in expressions that have side effects in the form of assignments.

A program consists of a collection of class and procedure declarations. The
declaration of a class named C gives its fields. A distinguished field, type, gives
the class name of an object; it is not allowed to be the target of assignment.
Because we do not consider subclassing, we need not distinguish a “self” pa-
rameter on which procedure calls would be dynamically dispatched. In fact for
simplicity in the formalism we consider only procedures that return a value
and have exactly one parameter, passed by value.

For each procedure p a term, body p, should be given. In Section 4 we add
visibility control for fields, by associating procedures with classes as in the
concrete syntax of Figure 1. Non-local variables and static fields are omitted.
In order to avoid unilluminating complications in the proofs, we assume there
are no recursive procedures. It should be straightforward to extend the results
to these and other program constructs as well as specification constructs such
as quantifiers and regular path expressions. What we need is that the lan-
guage satisfies Proposition 2.1 and Assumption 5.1 in the sequel; for example,
sequential fragments of Java and C# (Banerjee and Naumann, 2005a).

The details of typing, although important to preclude pointer arithmetic, are
ignored in the formalism for readability. In particular, the semantics is only
intended to be applied to type-correct programs, e.g., to execute a field deref-
erence x .f we assume that, if not null, the value of x is an object of the class
in which f is a field. Figure 1 uses the syntax proc p(x : T) : T ′{M } for pro-
cedure declarations, but we refrain from including that in the gramar since it
involves types.

7

Semantics. The language happens to be deterministic; in particular an ar-
bitrary but deterministic memory allocator is used. But purity, which is about
effects, does not depend on determinacy. Of course determinacy for assertions
is important to facilitate reasoning.

A store is a finite mapping from identifiers to primitive values (booleans,
integers, locations). An object state is just a store, the domain of which is the
object’s field names including the distinguished name, type, that records the
class of the object. A heap is a finite mapping from locations to object states.
Note that null is a value but not a location and therefore not in the domain
of a heap. Integer and boolean values are also distinct from locations. A global

state is a pair (h, s) where h is a heap and s is a store. The idea is that the
domain of s has local variables and parameters for a particular procedure. The
term state, without qualification, means global state.

A special variable, res, is present in the store part of every state, but is not
allowed to occur in the program text. It is used in the semantics like a tempo-
rary register, to record the value of a term. This formalization helps streamline
subsequent definitions, e.g., a single definition for equivalence of stores serves
for both the value and effect of a term. A bit of care has been taken in the
semantics so that desirable program equivalences are not falsified, e.g., the se-
mantics of x : = M restores res after evaluation of M . But only the treatment
of res in the semantics of assert has any bearing on the main results.

For partial correctness it suffices to use a relational (evaluation) semantics;
Table 2 gives representative cases. Note that in addition to metavariable M

we use N and Q to range over terms. For term M , the relation M , · → · on
states is written M , h, s → k , t and is interpreted to mean that in initial state
(h, s) execution of M yields outcome (k , t). To model that M diverges from
(h, s), there is no (k , t) such that M , h, s → k , t .

The semantics of a procedure invocation p(N) is defined using an auxiliary
relation. Suppose body p is the term M . The relation −|p|→ is defined by

h, s −|p|→ k , v ⇐⇒ there is t such that M , h, s → k , t and v = t res

This gives the meaning of a p in terms of its local state, where s stores the
parameter and res for M . The semantics of an invocation p(N) provides initial
values for the parameter and for res and it uses v as the result from p(N).

The semantics makes assert N yield a final state only if N yields a final state
(k , u) in which u res is true. The final state of the assert reflects the effect of
N on the heap and on the store, except that res retains its initial value just
as it does in the semantics of assignment —otherwise an assert could never
be equivalent to skip.

8

If M is . . . then M , h, s → k , t iff . . .

null k = h and t = [s | res 7→null]

skip k = h and t = s

x k = h and t = [s | res 7→s x]

x : = N N , h, s → k , u and t = [u | x 7→ u res | res 7→ s res] for some u

N .f N , h, s → k , u and u res 6= null and t = [u | res 7→k(u res).f]
for some u

x .f : = N s x 6= null and N , h, s → g , u and t = [u | res 7→s res]
and k = [g | s x .f 7→u res] for some g , u

assert N N , h, s → k , u for some u with u res = true, and t = [u | res 7→s res]

new C k = [h | o 7→default C state] and t = [s | res 7→o] where o = fresh h

p(N) N , h, s → g , r and g , arg(r res) −|p|→ k , v and t = [r | res 7→v]
for some g , r , v ,
where arg(y)=̂[x 7→y , res 7→default] and x is the parameter of p

N ;N ′ N , h, s → g , u and N ′
, g , u → k , t for some g , u

var x in N N , h, [s | x 7→default] → k , u for some u

and if x ∈ dom s then t = [u | x 7→s x] else t = x /−u

whileQ doN Q , h, s → g , r for some g , r , and either r res = false and k , t = g , r

or else r res = true and (N ;while Q do N), g , r → k , t

Table 2
Semantics for selected terms. We assume that fresh is a total function from heaps
to locations such that fresh h 6∈ dom h. We abbreviate a nested update to field f

of object o by [h | o.f 7→v]. The default C state has, in particular, value C for the
immutable field type.

In the case that M is a loop while Q do N , the semantics of M is defined in
terms of M itself in an unfolding of the loop. Thus Table 2 must be viewed as
an inductive definition, i.e., → is the least relation satisfying the conditions.
In the cases omitted from the Table, suitable semantics are straightforward.

Example 2.1 For readers interested in details of the semantics, here is an
illustrative but otherwise useless example. Consider execution of the term
“x .f ; assert (y : = ((z : = 1); 3)) = 2” from initial state (h, s). Evaluation
of x .f changes the store to [s | res 7→v] where v is the value in h of field f

of object s x —i.e., v = h(s x).f — and there is no outcome if s x is null.
Next, ((z : = 1); 3) is evaluated, with the effect of setting z to 1 and res to
3. Then y : = . . . can be completed, updating y but restoring res to v . Then
the equality is evaluated, comparing v with 2. If they are equal, the final
store is [s | res, z , y 7→v , 1, 3] because the semantics of assert, like : =, discards
the intermediate res values. If v 6= 2 there is no outcome. There is also no
outcome if f is not in the fields of class h(s x).type, but that cannot happen
in a program that is typable. 2

In the rest of the paper we confine attention to closed states, i.e., (h, s) such

9

that every location that occurs in s or in an object field in h is in dom h. (More
precisely, if o is in rng s or in rng r for some object state r in rng h then o is
in dom h.) The restriction to closed states could be dropped, at the cost of
some complications starting with Definition 3.2. There is little motivation to
drop the restriction because the following is easily proved for the language in
Table 1.

Proposition 2.1 If M , h, s → k , t and (h, s) is closed then (k , t) is closed,
dom s = dom t , and dom h ⊆ dom k .

3 Weak purity

A strongly pure term is one with no effect whatsoever. In our semantics that
means its final state differs from its initial state only in the special variable res.
A weakly pure term is one that does not write fields of any initially existing
objects. Nor does it write any local variables except possibly res.

Definition 3.1 Term M is weakly pure iff M , h, s → k , t implies dom h/k = h

and res /−t = res /−s. Procedure p is weakly pure iff h, s −|p|→ k , v implies
dom h / k = h. 2

In this and subsequent definitions we abuse notation for brevity, omitting
universal quantifiers (e.g., for h, s, k , t after the first “iff”).

As an example, pureProd in Figure 1 is weakly pure, but memoProd is not.
Weak purity allows that in the final store res may point to a new object from
which other new objects are reachable, and these may point to preexisting ob-
jects —but preexisting objects are not mutated and in particular do not point
to the new ones. The update x .f : = y is not weakly pure but the following
block is: {var x in x : = new C ; x .f : = y}.

For a procedure p, a sufficient condition for p to be weakly pure is that body p

is a weakly pure term. This is not necessary because body p could assign to
the parameters but only the final value of res is used. What matters most is
the following.

Fact 3.1 If p and M are weakly pure then so is the invocation p(M).

Proof: Suppose p(M), h, s → k , t . We must show that dom h / k = h and
res /−t = res /−s. By semantics, we have some g , r , v with M , h, s → g , r and
g , arg(r res) −|p|→ k , v and t = [r | res 7→v]. To show res /−t = res /−s, observe
that res /−t = res /−[r | res 7→v] = res /−r and by weak purity of M we have
res /−r = res /−s. Now we show dom h / k = h. By weak purity of p we have

10

dom g / k = g . By Proposition 2.1 we have dom h ⊆ dom g , hence we have
dom h / k = dom h / g . By weak purity of M we have dom h / g = h. 2

It is easy to show that weak purity is preserved by the other term constructs
—except for variable assignment and field update of course.

3.1 Equivalence modulo renaming

Our objective is to justify invocations of pure procedures in assertions by
showing that such an assertion is the same as skip. For this purpose we need
a suitable notion of equivalence. For example, skip is not semantically equal
to assert pos(pureProd(a, i)) because the latter allocates a new Cell object.
This object is only used in evaluation of the asserted formula; afterward it is
unreachable, but nonetheless the final state is not identical to the final state
after skip. We adopt a standard technique: state (h, s) is equivalent to (h ′, s ′)
if there is a bijective renaming from dom h to dom h ′ by which s, s ′ correspond
and so do all relevant object states. We use the term location bijection for a
partial bijective relation on locations.

Definition 3.2 (state equivalence ∼β) Let β be a location bijection. De-
fine relation ∼β on values by v ∼β v ′ iff either v , v ′ have primitive type and
v = v ′, or v = null = v ′, or (v , v ′) ∈ β.
For stores with the same domain, define s ∼β s ′ iff s x ∼β s ′ x for all x ∈ dom s.
For heaps, h ∼β h ′ iff dom β ⊆ dom h, rng β ⊆ dom h ′, and h o ∼β h ′ o ′ for all
(o, o ′) ∈ β.
For states, (h, s) ∼β (h ′, s ′) iff h ∼β h ′ and s ∼β s ′. 2

Note that every variable in a store must be related. Hence if a pair of locations
o, o ′ are related by β, and h ∼β h ′, then locations in all fields of h o and
h ′ o ′ must be related. In particular, h o.type = h ′ o ′.type, since we treat the
classname-valued field type like a primitive type. But there may be locations
in dom h and in object fields in h that are not in the domain of β (and in
dom h ′ but outside the range of β).

A kind of transitivity holds, via composing bijections; what we need is in
Lemma 4.1 in the sequel. A kind of reflexivity holds: (h, s) ∼δ h (h, s) where δ h

denotes the identity relation on dom h. Also, ∼δ h is symmetric. The notation
δ h is used extensively in the sequel. It lets us characterize weak purity as
follows.

Lemma 3.2 (weak purity) M is weakly pure iff M , h, s → k , t implies
k ∼δ h h and res /−t ∼δ h res /−s.

11

Proof: Because h is closed and dom h ⊆ dom k (from Proposition 2.1), the
object states in dom h / k have no locations outside dom h. Thus, by the defi-
nitions, k ∼δ h h is equivalent to dom h / k = h. Similarly, since the stores in
(h, s) and (k , t) are also closed, we get the result for states. 2

Equivalence for states is lifted to terms in a straightforward way, suited to
partial correctness and dynamic allocation.

Definition 3.3 (term equivalence ≈) For terms M ,M ′ to be equivalent,
written M ≈ M ′, means that if (h, s) ∼β (h ′, s ′) and M , h, s → k , t and
M ′, h ′, s ′ → k ′, t ′ then there is γ ⊇ β such that (k , t) ∼γ (k ′, t ′). 2

Here the implicitly universally quantified β, γ range over location bijections,
so γ is the same as β for preexisting locations. The longwinded condition can
be depicted as follows.

(h, s) ∼β (h ′, s ′)

(k , t)

M
?

∼γ (k ′, t ′)

M ′

?

The need for the inclusion γ ⊇ β is discussed later, following Proposition 3.4.

As an example, new C is not equivalent to skip because new updates res.
On the other hand, skip is equivalent to the block {var x in x : = new C ; }
which allocates an object that is unreachable in the final state. From an initial
bijection β the witnessing γ is also β, which does not have the fresh object in
its domain. As another example,

x : = new C ; x1 : = new D ≈ x1 : = new D ; x : = new C

This can be shown by taking γ = β ∪ {(a, d), (b, c)} if the left side allocates
objects a, b and the right allocates c, d (in that order). Note that x : = x would
not be equivalent to skip if we used a semantics for assignment that had an
effect on res.

Finally we can begin to justify weak purity.

Theorem 3.3 If Q is weakly pure then assert Q ≈ skip.

Proof: Suppose (h, s) ∼β (h ′, s ′), (assert Q), h, s → k , t , and skip, h ′, s ′ →
k ′, t ′. We must choose γ ⊇ β and show (k , t) ∼γ (k ′, t ′); we choose γ = β. By
semantics of assert we have Q , h, s → k , u for some u. By weak purity of Q we
have dom h / k = h. By Definition 3.2 we have dom β ⊆ dom h, whence, using
dom h / k = h and h ∼β h ′, we obtain k ∼β h ′. Hence (k , s) ∼β (h ′, s ′). By

12

weak purity of Q we have res /−u = res /−s and by semantics of assert we have
t = [u | res 7→s res], hence t = s. By semantics of skip we have (h ′, s ′) = (k ′, t ′),
so we conclude that (k , t) ∼β (k ′, t ′). 2

What remains is to justify that this equivalence is respected by any context
and to justify that the equivalence relation is not too coarse.

A context C[−] is a term that may have a missing subterm, called the hole

and indicated by −. As usual, C[M] denotes substitution of M for the hole,
allowing free variables of M to be captured. For example, if C is x : = −; y : = N

then C[M] is x : = M ; y : = N and if C[−] is var x in − then C[x : = N] is
var x in x : = N .

Proposition 3.4 (congruence) If M ≈ N then C[M] ≈ C[N] for all con-
texts C[−].

This is straightforward but not trivial to prove for the language in Table 1.
We sketch here just a couple of highlights; a detailed proof is in appendix A.
One proves the result together with the fact that the auxiliary relation −|p|→
preserves ∼. The proof is by induction on the structure of C[−] and on the
calling graph, which is acyclic by an assumption in Section 2 (otherwise the
proof would use fixpoint induction). It is instructive to prove the case for p(M)
because it fails for the relation ≈C in the sequel. Moreover, it shows why we
need γ ⊇ β in Definition 3.3.

So consider the context p(−) for procedure p. Suppose M ≈ N . To show
p(M) ≈ p(N), suppose (h, s) ∼β (h ′, s ′). Let M , h, s → g , r and M , h ′, s ′ →
g ′, r ′, so by M ≈ N there is some α ⊇ β with (g , r) ∼α (g ′, r ′). Now apply the
semantics of p, i.e., suppose g , arg(r res)−|p|→k , v and g ′, arg(r ′ res)−|p|→k ′, v ′.
By the induction hypothesis about −|p|→ we have some γ ⊇ α such that
k ∼γ k ′ and v ∼γ v ′. It follows from r ∼α r ′ and γ ⊇ α that (k , [r | res 7→
v]) ∼γ (k ′, [r ′ | res 7→v ′]) which completes the proof of p(M) ≈ p(N).

A direct consequence of Proposition 3.4 and Theorem 3.3 is the following.

Corollary 3.5 If Q is weakly pure then C[assert Q] ≈ C[skip] for all C[−].

It remains to show that equivalence is correctness preserving.

3.2 Observation and specification

Unreachable objects cannot be detected by ordinary source program con-
structs. But consider the predicate (∃o •o.type = C) where o ranges over allo-
cated objects and C is some class. Two implementations that are related by ≈

13

might be distinguished by a specification with postcondition (∃o•o.type = C).
They could also be distinguished by a postcondition involving address arith-
metic. Congruence would also be broken if such a predicate could be expressed
by a term in an assertion.

The decision in languages like JML (Leavens et al., 2003) to allow weakly pure
procedure calls in specifications is only sound if predicates are restricted so
they cannot make undesired distinctions. We aim for results that are generally
applicable so we address this issue in terms of semantic conditions. That is, we
consider predicates to be sets of states —this is important because verification
systems often use a shallow embedding of formulas in the language of a theo-
rem prover. One condition is that predicates should not depend on particular
locations, i.e., they should respect bijective renaming. Another condition is
garbage-insensitivity, which rules out the example (∃o • o.type = C).

To formalize the conditions just mentioned, first define reach(h, s) be the set
of locations reached transitively from s. The garbage collection function on
states is defined by gc(h, s) = ((reach(h, s)/h) , s). For set ψ of states, we say
that ψ is healthy iff (h, s) ∈ ψ implies (k , t) ∈ ψ whenever gc(h, s) ∼β gc(k , t)
for some β.

Terms in our illustrative language denote healthy predicates. To make this
claim precise, consider any term Q . Define the set of states [Q] by (h, s) ∈ [Q]
iff there is some k , t with Q , h, s → k , t and t res = true. To show that [Q]
is healthy, suppose (h, s) ∼β (h ′, s ′) and Q , h, s → k , t and Q , h ′, s ′ → k ′, t ′.
Now Q ≈ Q by Proposition 3.4, so we get (h, t) ∼γ (h ′, t ′) for some γ, whence
(t res) ∼γ (t ′ res). Thus t res = true iff t ′ res = true, by definition of ∼γ.

Finally, equivalent terms are not distinguished by healthy specifications. Here
a specification is a pair pre, post of predicates. We refrain from spelling out
the usual notion of satisfaction for partial correctness.

Proposition 3.6 Suppose M ≈ N . Then for any pre, post specification where
post is healthy, M satisfies the specification iff N does.

This is a straightforward consequence of part (b) in the following.

Lemma 3.7 (a) If (h, s) ∼β (h ′, s ′) then gc(h, s) ∼γ gc(h ′, s ′) where γ is
obtained by restricting β; that is, γ = β ∩ (reach(h, s) × reach(h ′, s ′)).
(b) Suppose M ≈ N and M , h, s → k , t and N , h, s → k ′, t ′. If ψ is healthy
then (k , t) ∈ ψ iff (k ′, t ′) ∈ ψ.

Proof: For (a): γ agrees with β on everything still reachable in gc(h, s)
(respectively, gc(h ′, s ′)). For (b): We have (h, s) ∼δ h (h, s) by definitions. By
M ≈ N there is some β ⊇ δ h with (k , t) ∼β (k ′, t ′). Then by part (a) there is
γ with gc(k , t) ∼γ gc(k ′, t ′) so the result holds by healthiness of ψ. 2

14

With Proposition 3.6 we have completed the justification of calls to weakly
pure procedures in assertions. If procedure calls in Q are weakly pure then Q

is too, using Fact 3.1. So by Corollary 3.5 the assert can be replaced by skip.
This replacement is correctness-preserving, by Proposition 3.6.

4 Observational purity

Our objective is to find a notion of purity that validates a result like Corol-
lary 3.5 but which allows updates of preexisting fields. Clearly not all updates
can be allowed. For example, suppose Q is an invocation p(x) where boolean-
valued p checks whether x .f is positive but also sets x .f to 0. For the context
−; y : = x .f we then have assert Q ; y : = x .f 6≈ skip; y : = x .f . The ex-
ample in Figure 1 suggests that some updates can be allowed provided the
modified state is suitable encapsulated.

4.1 Visibility

A simple notion of encapsulation suffices for our purposes. (As discussed in
Section 6, it can be specialized to extant encapsulation systems for languages
like Java.) A field f of class C may or may not be visible in procedures of class
D . Two heaps are equivalent, as viewed in code of class C , if corresponding
objects have corresponding values for all visible fields. It is well known that
restriction of field access is inadequate to achieve encapsulation; additional
restrictions on heap sharing are needed to prevent interference with objects

that are intended to be private (Hogg et al., 1992; Leino and Nelson, 2002;
Banerjee and Naumann, 2005a). For our purposes we just need a semantic
notion of visibility that takes locations into account. This can be expressed
using the location bijection; a location not visible in a particular context is
not in the bijection.

We refrain from formalizing concrete syntax like the public/private field mod-
ifiers in Figure 1 or modules and module scoped fields. Instead we directly
formalize the visibility relation for a program. We assume that distinct classes
have disjoint field names. We assume that each procedure p is declared in
some class, denoted class p. Furthermore, for each class C we are given a set
vis C of fields visible in C . Note that, since vis C can contain fields of any and
all classes, this encompasses fields with private, public (global), and module-
scoped visibility. (And even “protected” visibility for subclasses, though we
do not model subclasses or inheritance.)

For a location o ∈ dom h, we can write vis C / h o for the part of the object

15

state h o that is visible in code of class C . Thus, using ∼β for stores from
Definition 3.2, we can write vis C / h o ∼β visC / h ′ o ′ to say that the two
object states, h o and h ′ o ′, have related visible fields

If class p = C then the only fields that may be read or written in body p are
those in visC . Henceforth we confine attention to programs that respect this
visibility condition. To make clear when we are considering a term M that
would be allowed in a procedure of class C , we revise the semantic notation,

writing M , h, s
C
→ k , t .

The visibility-based equivalences are straightforward.

Definition 4.1 (∼C
β , ≈C) For heaps, define h ∼C

β h ′ iff dom β ⊆ dom h,
rng β ⊆ dom h ′, and visC / h o ∼β vis C / h ′ o ′ for all (o, o ′) ∈ β.
For states, define (h, s) ∼C

β (h ′, s ′) iff s ∼β s ′ and h ∼C
β h ′.

For terms, define M ≈C M ′ iff (h, s) ∼C
β (h ′, s ′) and M , h, s

C
→ k , t and

M ′, h ′, s ′
C
→ k ′, t ′ implies there is γ ⊇ β such that (k , t) ∼C

γ (k ′, t ′). 2

Note that h ∼β h ′ implies h ∼C
β h ′, for any β,C , because ∼β is like ∼C

β

with no fields hidden. Note also that for the store component of a state it
suffices to use relation s ∼β s ′ because the store models local variables and
parameters and we only use ∼C

β to relate states for executions where the locals
and parameters are visible.

The following technical results follow easily from the definitions.

Lemma 4.1 (a) If h ∼α g and g ∼C
β k then h ∼C

α·β k .
(b) If δ h ⊆ β, h ∼δ h g , and g ∼C

β k then h ∼C
δ h k .

(c) If h ∼C
β k and γ ⊇ β then h ∼C

γ k provided that dom γ ⊆ dom h and
rng γ ⊆ dom k . Similarly for stores.

4.2 Observational purity

Our goal is for assert Q ≈C skip to hold provided that Q has no effect
observable in class C —e.g., Q is a call p(x) that changes fields of x but
only fields private to D with D 6= C . Following the pattern of Lemma 3.2 we
adapt the definition of weak purity to one using the visible relations. (Whereas
metavariable C is used to range over arbitrary classes, D is used throughout
the paper for some designated class with respect to which purity is considered.)

Definition 4.2 Term M is observationally pure outside D provided that the

following holds for all C 6= D . If M , h, s
C
→ k , t then k ∼C

δ h h and res /−t ∼δ h

res /−s. Procedure p is observationally pure outside D iff h, s −|p|→ k , v implies

16

k ∼C
δ h h for all C 6= D . 2

Weak purity implies observational purity (outside any D) because k ∼β h

implies k ∼C
β h for any C .

Procedure memoProd of class D0 in Figure 1 is observationally pure outside
D0. It updates fields of preexisting objects but those fields are not visible out-
side D0 and the updates do not make it possible to reach the newly allocated
object (return value). For initial heap h, the new object is not in the range of
δ h.

As in the case of weak purity, a sufficient but not necessary condition for a
procedure to be observationally pure is that its body is. Moreover, if p and M

are observationally pure outside some D then so is p(M). Another similarity
with weak purity is the following.

Fact 4.2 If Q is observationally pure outside D then assert Q ≈C skip for
all C 6= D .

Proof: Suppose (assert Q), h, s
C
→ k , t and (h, s) ∼C

β (h ′, s ′). By semantics

we have skip, h ′, s ′
C
→ h ′, s ′. It suffices to show (k , t) ∼C

β (h ′, s ′). By semantics

of assert we have Q , h, s
C
→ k , u for some u. By observational purity of Q we

have k ∼C
δ h h. By Lemma 4.1(b) we obtain k ∼C

δ h h ′, hence (k , s) ∼C
β (h ′, s ′)

using Lemma 4.1(c). By observational purity of Q we have res /−u ∼δ h res /−s

so by semantics of assert we have t = s. 2

This result is not satisfactory, however, because unlike the situation for weak
purity we do not get congruence in general. That is, M ≈C M ′ does not imply
C[M] ≈C C[M ′] (compare Proposition 3.4).

Example 4.1 Consider the term pos(memoProd(y , i)), evaluation of which
may well update y .arg and y .farg . By Fact 4.2, assert pos(memoProd(y , i)) ≈C

skip. Moreover the procedures of D0 do not leak information about fields up-
dated by memoProd , so for example we have

assert pos(memoProd(y , i)); get(y) ≈C skip; get(y)

But suppose D0 declared procedure leak(self : D0) : int{ return self .arg}.
Then

assert pos(memoProd(y , i)); leak(y) 6≈C skip; leak(y)

because the result of leak(y) after memoProd(y , i) is i whereas after skip it
is the initial value of y .arg . The problem is that leak violates encapsulation

17

and makes the cache indirectly visible. 2

In fact the failure of congruence is more fundamental. We claim memoProd 6≈C

memoProd . Now congruence for terms fails, since if p is a procedure such that
p 6≈C p then M ≈C N does not imply p(M) ≈C p(N). To justify the claim,
note that even if h ∼C

β h ′ for all C 6= D0, it is possible for there to be (o, o ′) ∈ β

with h o.type = D0 and moreover h o arg = h ′ o ′ arg but h o farg 6= h ′ o ′ farg

because these fields are not visible outside D0. From such a pair of states, the
corresponding pair of results from memoProd are Cell -objects with different
val field; thus 6∼C for the final state. The problem is solved in Section 5 and
Definition 4.2 is retained.

An apparent shortcoming of Definition 4.2 is that checking the property ap-
pears to be a nontrivial and nonstandard problem. In fact, the check can be
reduced to equivalence as follows. We say N terminates when M does provided
that M , h, s ⇓ implies N , h, s ⇓, where M , h, s ⇓ means there exists k , t with
M , h, s → k , t .

Fact 4.3 Suppose M ≈C N for all C 6= D , and suppose N is weakly pure. If
N terminates when M does then M is observationally pure outside D .

Proof: Suppose C 6= D and M , h, s
C
→ k , t , to show that M satisfies Defini-

tion 4.2. By termination hypothesis, there is (k ′, t ′) such that N , h, s
C
→ k ′, t ′.

Note that (h, s) ∼C
δ h (h, s), so by M ≈C N there is some β ⊇ δ h with

(k , t) ∼C
β (k ′, t ′). By weak purity of N and Lemma 3.2 we have k ′ ∼δ h h

and res /−t ′ ∼δ h res /−s; hence h ∼δ h k ′ by symmetry of ∼δ h . From h ∼δ h k ′

and k ′ ∼C
β k we get h ∼C

δ h k by chaining Lemma 4.1(b) and similarly for
res /−t ∼δ h res /−s. 2

As an example, procedure memoProd is equivalent to pureProd which is weakly
pure and terminates when memoProd does.

The termination antecedent is necessary. As an extreme case, if N never ter-
minates then it is weakly pure and M ≈C N for any M and any C whatsoever.

A standard technique for proving program equivalence in the presence of en-
capsulated state is to use simulation relations —unlike mere visible equiva-
lence, a simulation can track correspondence of internals and impose invari-
ants (Mitchell, 1996; de Roever and Engelhardt, 1998). Using a simulation to
establish the antecedent of Fact 4.3 has the added benefit of congruence.

18

5 Observational purity via simulation

This Section gives the main result, equivalence of C[assert Q] and C[skip]
for observationally pure Q and any context C[−]. To this end, we generalize
from specific equivalences on states to an arbitrary relation subject to some
conditions. The relation is provided by the reasoner who wishes to treat a
procedure as observationally pure outside some designated class D .

As before, the relation involves renaming of locations. So what we consider is
a ternary relation, written � and read “couples”, on two heaps and a bijection
—or what amounts to the same thing, a family, indexed by bijections, of binary
relations �β on heaps.

Example 5.1 In the context of Figure 1, define
.
� by h

.
�β h ′ iff

• h ∼C
β h ′ for every C 6= D0, and

• for all (o, o ′) ∈ β, if h o.type = D0 then h o.f = h ′ o ′.f and both h o and
h ′ o ′ satisfy the invariant mentioned in the caption of Figure 1 —that is,
h o.arg 6= 0 implies h o.farg = h o.f ∗h o.arg and mutatis mutandis for h ′, o ′.

From two states related by
.
�β, memoProd gives the same results, indeed that

is true for all the procedures of D0. 2

If the cache involved other objects, an encapsulation condition would be im-
posed on them as well, e.g., via ownership (Clarke et al., 2001; Clarke and
Drossopoulou, 2002; Barnett et al., 2004a). That prevents problems like Ex-
ample 4.1. In our formulation, encapsulation at the level of classes is sufficient;
it need not be instance-based. Thus our notion of coupling applies to those
of Banerjee and Naumann (2005a,c) but is more general.

To express healthiness conditions on a given coupling � we extend it to states,
terms, and procedures following the usual pattern.

Definition 5.1 Given a bijection-indexed family of relations �β on heaps,
define �β on states by (h, s) �β (h ′, s ′) iff h �β h ′ and s ∼β s ′. For terms,

define M � M ′ iff (h, s) �β (h ′, s ′) and M , h, s
C
→ k , t and M ′, h ′, s ′

C
→ k ′, t ′

implies that there is γ ⊇ β such that (k , t) �γ (k ′, t ′) (for any C). Finally,
p � p ′ iff (h, s) �β (h ′, s ′) and h, s −|p|→ k , v and h ′, s ′ −|p ′|→ k ′, v ′ implies
there is γ ⊇ β such that k �γ k ′ and v ∼γ v ′. 2

Definition 5.2 (coupling, simulation) A D-coupling is a bijection indexed
family, �, of relations on heaps, such that

(1) if h �β k then domβ ⊆ dom h and rng β ⊆ dom k

(2) h �α g and g ∼β k implies h �α·β k

19

(3) h �β k implies h ∼C
β k for all C 6= D

A D-simulation is a D-coupling such that the following hold.

(4) there is a term Init such that for any C , β, h, s, h ′, s ′, if (h, s) ∼C
β (h ′, s ′)

then there is some k , t , k ′, t ′ with Init , h, s
C
→ k , s and Init , h ′, s ′

C
→ k ′, s ′

and there is some γ ⊇ β with (k , s) �γ (k ′, s ′)
(5) p � p for every procedure p in every class

Items (1) and (2) are simple healthiness conditions (compare Definition 3.2
and healthy predicates in Section 3). Item (3) says that the relation reduces
to equality modulo renaming, for classes other than D .

Initialization is often needed to establish a coupling �; it typically does not
simply follow from (h, s) ∼C

β (h ′, s ′) because ∼C
β allows arbitrary difference in

non-visible fields. Item (4) is a simple formalization of initialization that fol-
lows the pattern used in the literature for single-instance modules (de Roever
and Engelhardt, 1998). For dynamic allocation, it is the object constructor (or
default values) that establishes the relation (Banerjee and Naumann, 2005a;
Cavalcanti and Naumann, 2002). To cater for this in our simple setup, one can
take Init to be an assertion of a predicate like “all existing D0-objects have
arg = 0 = f ”, or even “no D0-objects exist”. 4 Note also that (4) says Init

must be legal in the context of any class C , e.g., it could be the invocation of
a procedure of class D .

Item (5) requires all procedures to preserve �. It precludes leak in Exam-
ple 4.1. All procedures in Figure 1 preserve the relation

.
� of Example 5.1.

Item (5) may seem alarmingly strong. But for programs using suitable encap-
sulation, p � p holds for all p provided that it holds for all p of class D .
This is an instance of a more general result, the abstraction theorem of the
theory of representation independence (which encompasses relations between
two different implementations of a class). The abstraction theorem says that
only procedures of class D , which have privileged access to encapsulated state,
must be shown to preserve the coupling. (See Section 6.)

For practical application, one also wants the simulation to be defined “locally”,
i.e., in terms of a single instance of the class D in question. To this end,
additional conditions may be imposed on the coupling as well as on programs.
For our purposes, a sufficient condition on couplings is expressed by item (5).
About programs we make the following.

Assumption 5.1 Suppose � is a D-simulation. If M � N then C[M] � C[N]
for any context C[−].

4 The latter is not a healthy predicate as defined in section 3, but there is no
problem because the healthiness condition is not needed for preconditions.

20

This congruence property does not hold in interesting languages without re-
stricting “any context” to mean those that respect encapsulation in some
sense. A sufficient restriction can be obtained by combining strong typing,
class based visibility, and some form of ownership for alias confinement; asso-
ciated conditions must be imposed on �. Section 6 cites results of this form,
proved for richer languages than the illustrative one in this paper.

5.1 Using D-simulations for purity

The straightforward generalization of Definition 4.2 is as follows.

Definition 5.3 Let � be a D-coupling. Then M is observationally pure for

� iff for all C 6= D , if M , h, s
C
→ k , t then k �δ h h and res /−t ∼δ h res /−s.

Procedure p is observationally pure for � iff h, s−|p|→k , v implies k �δ h h. 2

Instantiating � with ∼ gives the condition in Definition 4.2. Moreover, for
any D it is easy to show that ∼ satisfies conditions (1–3) of Definition 5.2
of D-coupling. Indeed, simulation condition (4) holds, taking Init to be skip,
and condition (5) follows from congruence, Proposition 3.4. Thus for a term
or procedure to be observationally pure for ∼ is the same as its being observa-
tionally pure outside D according to Definition 4.2 (for any D). As a special
case, if M is weakly pure then it is observationally pure for ∼ (again, outside
any D). A sort of converse is given by the following.

Fact 5.2 Suppose M is observationally pure for some D-coupling �. Then it
is observationally pure outside D .

Proof: Suppose C 6= D and M , h, s
C
→ k , t . By observational purity for �

we have k �δ h h and res /−t ∼δ h res /−s. The latter condition is the same as the
condition for stores in Definition 4.2 of observational purity. For the heap, we
get k ∼C

δ h h using Definition 5.2(3). 2

This Fact, together with Fact 4.2, implies assert M ≈C skip for C 6= D , if M

is observationally pure for some �. But Fact 4.3 suggests that for interchange-
ability of an assert with skip, it should be enough to formulate observational
purity as in Definition 4.2. The role of a coupling is then to prove an an-
tecedent equivalence and in addition to enjoy a congruence property. This is
worked out in our main result to follow.

Analogous to Fact 4.3, one might expect the following: If M � N for some
weakly pure N , and N terminates when M does, then M is observationally
pure outside D . But the property M � N is only applicable to a pair of initially
coupled states and the coupling relation need not be reflexive, so the proof

21

of Fact 4.3 does not directly generalize. However, we can prove the following
Fact. It uses a termination condition that would be imposed everywhere for
simulations in a total-correctness setting.

Definition 5.4 N terminates when M does, modulo �, iff (h, s) �β (h ′, s ′)
and C ,M , h, s ⇓ implies C ,N , h ′, s ′ ⇓. 2

Fact 5.3 If M � N and N is weakly pure then assert M � skip provided
that � is a D-coupling and N terminates when M does, modulo �.

Proof: Suppose (assert M), h, s
C
→ k , t and (h, s) �β (h ′, s ′). By semantics,

skip, h ′, s ′
C
→ h ′, s ′, so we need to show (k , t) �γ (h ′, s ′) for some γ ⊇ β.

We leave the store part to the reader and show k �γ h ′. By M � N and

termination hypothesis for N , we have M , h, s
C
→ k , r and N , h ′, s ′

C
→ g ′, r ′

and (k , r) �γ (g ′, r ′) for some r , g ′, r ′ and some γ ⊇ β. By weak purity of
N and Lemma 3.2, we have g ′ ∼δ h′ h ′. Thus k �γ g ′ and g ′ ∼δ h′ h ′, hence
k �γ h ′ using Definition 5.2(2). 2

5.2 Main result

In this section we show that if Q is observationally pure for some D-coupling
� then C[assert Q] and C[skip] are equivalent in any context outside class D .
For reasoning within D , condition (5) of Definition 5.2 justifies the use of Q

in preconditions: procedures of D do not distinguish between the state before
and after Q . Condition (5) together with Assumption 5.1 justifies the use of
Q in postconditions in D . Free use of Q in assertions within procedures of D

cannot be justified.

To prove the main result, two more ingredients are needed. The first is the no-
tion of equivalence for properly initialized programs. The step from simulation
to program equivalence requires that the programs proved equivalent are prop-
erly initialized, so that from equivalence of initial states one gets the coupled
states needed to exploit the simulation. In the setting of our formalization,
the following is suitable. It can be justified by an analysis of specifications as
in Section 3.2 but taking into account visibility restrictions on specifications;
this we leave to the reader.

Definition 5.5 (initialized equivalence,
.
≈

C
) Suppose Init is given as in

Definition 5.2. Define M
.
≈

C
M ′ iff Init ; M ≈C Init ; M ′. 2

The point of using simulations is to get both congruence and the following,
which expresses how simulation implies equivalence.

22

Lemma 5.4 If M � N and � is a D-simulation then M
.
≈

C
N for any

C 6= D .

Proof: To show Init ; M ≈C Init ; N , suppose (h, s) ∼C
β (h ′, s ′). By Defini-

tion 5.2(4) there is g , g ′, α such that Init , h, s
C
→ g , s and Init , h ′, s ′

C
→ g ′, s ′

and (g , s) �α (g ′, s ′) and α ⊇ β. If M , g , s
C
→ k , t and M ′, g ′, s ′

C
→ k ′, t ′ then

by M � N we have (k , t) �γ (k ′, t ′) for some γ ⊇ α. Then (k , t) ∼C
γ (k ′, t ′)

by Definition 5.2(3). 2

The last ingredient needed for the main result is a way to compose the main
relations. We have defined several relations on terms and they enjoy various
composition properties, most of which turn out not to help. What we need is
the following.

Lemma 5.5 Suppose � is a D-simulation and N terminates when M does,
modulo �. If M

.
≈

C
N and N ≈ Q then M

.
≈

C
Q .

Proof: To show M
.
≈

C
Q , suppose (h, s) ∼C

β (h ′, s ′) and (Init ; M), h, s
C
→ k , t

and (Init ; Q), h ′, s ′
C
→ k ′, t ′. We must show (k , t) ∼C

γ (k ′, t ′) for some γ ⊇ β,
i.e., k ∼C

γ k ′ and t ∼γ t ′. Here is a diagram to illustrate the following argument.

(h, s) ∼C
β (h ′, s ′)

(g , s)

Init
?

�α (g ′, s ′)

Init
?

(k , t)

M
?

∼C
γ (j , r)

N
?

∼φ (k ′, t ′)

Q

-

From Definition 5.2(5) for Init we have Init , h, s
C
→ g , s and Init , h ′, s ′

C
→ g ′, s ′

with (g , s) �α (g ′, s ′) for some α ⊇ β and some g , s, g ′, s ′ (using that Init is

deterministic). From semantics of “;” we have M , g , s
C
→ k , t and Q , g ′, s ′

C
→

k ′, t ′. By termination hypothesis for N and (g , s) �α (g ′, s ′) we have N , g ′, s ′
C
→

j , r for some j , r . Then by M
.
≈

C
N we get (k , t) ∼C

γ (j , r) for some γ ⊇ β.
By N ≈ Q using (g ′, s ′) ∼δ g ′ (g ′, s ′) we have (j , r) ∼φ (k ′, t ′) for some φ ⊇
δ g ′. So using Lemma 4.1 for (k , t) ∼C

γ (j , r) and (j , r) ∼φ (k ′, t ′) we get
(k , t) ∼C

γ·φ (k ′, t ′). Finally, γ · φ ⊇ β follows from γ ⊇ β and φ ⊇ δ g ′ using
rng β ⊆ dom h ′ ⊆ dom g ′. 2

Finally, here is the main result of the paper.

Theorem 5.6 Suppose � is a D-simulation and N terminates when Q does,
modulo �. If Q � N and N is weakly pure then C[assert Q]

.
≈

C
C[skip] for

all contexts C and classes C 6= D .

23

Proof: From Q � N we get C[assert Q] � C[assert N] by congruence

Assumption 5.1. Thus C[assert Q]
.
≈

C
C[assert N] by Lemma 5.4. By weak

purity of N and Corollary 3.5 we have C[assert N] ≈ C[skip]. Because all
constructs of the language are monotonic with respect to termination, we
have that C[assert N] terminates when C[assert Q] does, modulo �. Thus
Lemma 5.5 applies to yield the result. 2

5.3 An alternative

Theorem 5.6 avoids the need to explicitly use any notion of observational
purity. It says that to use Q in a specification, the reasoner must find some
weakly pure N and some simulation � such that Q � N . The alternative
is to make direct use of observational purity for �, following the pattern of
Theorem 3.3 and Corollary 3.5. This avoids the need to exhibit a weakly pure
N and prove Q � N , though of course the simulation property of � must
still be proved. The alternative requires a kind of transitivity condition on
couplings. This condition is satisfied in all the observational purity examples
encountered by the author, but it is not included in Definition 5.2 because
none of the other results depend on it. Also, transitivity does not make sense
for simulations used for changes of data representation, where the source and
target of the relation are different state spaces.

Theorem 5.7 Suppose � is a D-simulation such that �α · �β = �α·β for all
α, β. If Q is observationally pure for � then assert Q � skip.

Proof: Suppose (h, s) �β (h ′, s ′), (assert Q), h, s → k , t , and skip, h ′, s ′ →
k ′, t ′. We shall show (k , t) �β (k ′, t ′). The argument for stores t , t ′ is similar to
that in the proof of Theorem 3.3, so we consider just the heap. By semantics
of skip we have h ′ = k ′ so it remains to show k �β h ′. By semantics of assert
we have Q , h, s → k , u for some u. By observational purity of Q for � we have
k �δ h h. So we have k �δ h h �β h ′ and thus k �δ h·β h ′ by the hypothesis
about transitive composition. Because dom β ⊆ dom h we have δ h · β = β so
we are done. 2

Corollary 5.8 Suppose � is a D-simulation such that �α · �β = �α·β. If Q

is observationally pure for � then for any context C[−] and any class C 6= D

we have C[assert Q]
.
≈

C
C[skip].

Proof: By Theorem 5.7 we have assert Q � skip, hence C[assert Q] �

C[skip] by congruence Assumption 5.1. Thus C[assert Q]
.
≈

C
C[skip] by

Lemma 5.4. 2

24

6 Conclusion

To avoid logical anomalies and misleading results from runtime assertion
checking, practical verification systems impose various purity requirements
for specifications and annotations. ESC/Java allowed no procedure invoca-
tions (Flanagan et al., 2002), JML prescribes weak purity checking (Leavens
et al., 2003), and Eiffel merely advises programmers to avoid effects (Meyer,
1997). But for verification to scale to large systems it is important to consider
as pure some procedures which, for reasons such as caching, update preexisting
objects, provided that the updates are unobservable. Absence of anomalies for
formula Q can be made precise by equating assert Q with skip —the pres-
ence of Q has no effect on the properties of following code— using a notion
of equivalence that is a congruence and correctness-preserving.

Our main result (Theorem 5.6) shows that Q satisfies the equivalence, in
the context of some class C , provided that it simulates, in the context of a
different class D , some weakly pure term N . The main application is where
Q invokes procedures of D and is used to reason about procedures of C . The
result reduces admissibility of Q to a proof obligation (simulation) together
with static analysis for weak purity rather than a more specialized analysis.

To apply our results one needs a technique for defining D-simulations. In
particular, it is essential that condition (5) in Definition 5.2 only needs to
be checked for procedures of D ; for procedures of C 6= D it should follow
by a preservation/congruence theorem that is proved once and for all for
the programming language. Suitable results —analogs of our Assumption 5.1
and Lemma 5.4— are a special case of the theory of representation indepen-
dence and have been developed for many sorts of languages (Mitchell, 1996;
de Roever and Engelhardt, 1998). For Java-like languages, Banerjee and Nau-
mann (2005a) give such a theory under the assumption of suitable alias control
which can be achieved using static analysis (Banerjee and Naumann, 2005a;
Müller, 2002; Clarke and Drossopoulou, 2002). In these works, alias control is
based on the idea that an object “owns” some objects that comprise its en-
capsulated representations; the static analysis uses annotated types to check
that the representation objects are not exposed to clients.

An alternative to type-checking for ownership is to reason about it using
assertions (Barnett et al., 2004a; Naumann and Barnett, 2006). This state
based approach to encapsulation affords some flexibility, e.g., ownership may
be transferred. A representation independence result has been given using
state based encapsulation (Banerjee and Naumann, 2005c).

Such results are difficult to prove for complex languages so it is fortunate that
we could treat observational purity using a notion of simulation compatible

25

with extant results on encapsulation.

In justifying the choice of program equivalence we uncovered an issue for weak
purity. If, in postconditions, it is allowed to use quantification over all allocated
objects, even unreachable ones, then pre/post specifications can “observe” al-
location and even weak purity is not sound. Quantifications over all allocated
objects have been used in some settings, e.g., the program invariants of the
Boogie discipline (Barnett et al., 2004a; Naumann and Barnett, 2006), but in
that context programmer-defined predicates are in fact restricted to reachabil-
ity in terms of auxiliary fields. Pierik et al. (2005) advocate global invariants
such as “there is at most one C -object” which are apparently incompatible
with weak purity. Program equivalence modulo garbage collection has been
studied by Calcagno et al. (2003) and others (Banerjee and Naumann, 2005a).

Using the results. To illustrate the practical application our results we
turn once more to the example in Figure 1. Suppose we want to use the term
memoProd(x , y) in an assertion in some context outside class D0, where x

and y are variables. Example 5.1 defines a suitable coupling
.
�. To apply

Theorem 5.6, this coupling must be a D0-simulation and some weakly pure
term N must be found such that memoProd(x , y)

.
� N . The coupling

.
� in

Example 5.1 is induced by a “local coupling” relation on a single pair o, o ′ of
D0-objects which can be expressed by a formula:

o.f = o ′.f ∧ (o.arg 6= 0 ⇒ o.farg = o.f ∗ o.arg)
∧ (o ′.arg 6= 0 ⇒ o ′.farg = o ′.f ∗ o ′.arg)

(1)

The relation only depends on the fields of o and o ′, not on any other ob-
jects. For couplings of this sort, it is a corollary of Banerjee and Naumann
(2005a) that Assumption 5.1 holds, in a Java-like language, for all contexts
that respect private visibility. That is, the fact that these fields have private
visibility is enough to encapsulate them within the class. To show that this
coupling is a D0-simulation is a matter of checking that it is preserved by
each procedure of class D0 (i.e., get

.
� get , set

.
� set , pureProd

.
� pureProd ,

and memoProd
.
� memoProd) which in this case is not difficult to show. It

remains to find a weakly pure term N and show memoProd(x , y)
.
� N . A suit-

able choice for N is pureProd(x , y). A simple syntactic condition is enough to
show this is weakly pure: the only potential impurity is procedure pureProd

and the only field update in its body is of a newly allocated Cell . Finally,
memoProd(x , y)

.
� pureProd(x , y) follows from memoProd

.
� pureProd which

can be proved directly in terms of the definition of � and the semantics. Prac-
tical ways to prove particular simulations like memoProd

.
� pureProd and

set
.
� set , without direct recourse to the semantics, are discussed later under

related work.

26

Procedure leak in Example 4.1 does not preserve
.
�, because the final stores

are not related by ∼ as stipulated in Definition 5.1. Thus if this procedure is
added to class D0 then

.
� fails to be a D0-simulation and therefore cannot be

used to justify use of memoProd(x , y) in an assertion.

Consider a variation of the example, where arg and farg are not integers but
rather references to Cell objects used to hold the corresponding integers. The
coupling relation in Example 5.1 would be adapted mutatis mutandis. These
Cell objects would be designated as owned by their referencing D0-instance,
in order for the corresponding version of

.
� to be considered admissible by the

ownership rules used in the representation independence theories of Banerjee
and Naumann (2005a,c). The val field in Cell is public and could be updated
by a client program that obtained a reference to one of these Cell objects.
Such a reference could be obtained by the analogous version of procedure leak

from Example 4.1; for just this reason, the leak procedure would be rejected by
the static analysis in Banerjee and Naumann (2005a) and by ownership type
systems (Müller, 2002; Clarke and Drossopoulou, 2002). The representation
independence theories say that Assumption 5.1 holds for all contexts that
conform to the restrictions of the ownership system. Moreover, the theories
require the reasoner to supply only the definition of a local coupling, like
Equation 1; the relation � on global states is given by a general construction.

For practical purposes it seems advisable to disallow explicit assignments in
assertions and specifications. Then the only possible effects are by way of
procedure invocations and these could be restricted to procedures explicitly
marked as observationally pure. The theory would then be used to justify the
purity of those procedures, as in the example of the preceding paragraphs
which reduced the proof obligation to memoProd

.
� pureProd .

In summary, to apply our theory to justify that a procedure p is observationally
pure outside some D the following steps are taken: define a local coupling that
depends only on private fields and owned objects; show that it is preserved
by all procedures of D (whence by general theory it is a D-simulation); give
a weakly pure procedure and show that it is simulated by p, or give a weakly
pure term and show that it is simulated by the body of p.

An alternative way to justify use of some term Q in a specification, which
avoids the need to define weakly pure N that simulates Q , is to give a simu-
lation � and show directly that Q is observationally pure for �. For Q to be
observationally pure for � requires that its initial and final states are always
related by �. For the latter property there is a general proof technique which
applies whenever h �β h ′ can be expressed as a conjunction of the form

I (h) and I (h ′) and h ∼C
β h ′ for all C with C 6= D

27

for some predicate I . This is the case with Example 5.1 and also the variation
using Cell objects. In this situation, Corollary 5.8 applies since such a relation
has the requisite transitivity property. To prove that a coupling of this form is
a simulation one can separately prove that I is an invariant preserved by the
procedures of class D and that ∼C is preserved by the procedures of class D .
Moreover observational purity of Q for � (Definition 5.3) is decomposed to
two properties: I is preserved by Q and k ∼C

δ h h where k is the heap that Q

yields from initial heap h. In practice, the global invariant I is the ownership
invariant together with the conjunction, over all instances, of a local object in-
variant like the one in the caption of Figure 1 (also used in Equation (1)). The
condition that ∼C is preserved by procedures is also known as “noninterfer-
ence” and can be checked by static analyses developed for secure information
flow (Sabelfeld and Myers, 2003; Banerjee and Naumann, 2005b). Such analy-
ses also check the condition k ∼C

δ h h where k is the final state of the candidate
pure term Q —the property is sometimes called write confinement. This al-
ternative is the focus of Barnett et al. (2006). It is under discussion for the
JML tools, 5 and is being implemented in the Spec#/Boogie project (Barnett
et al., 2004a).

Our formulation of observational purity is based on the class as a unit of
encapsulation, for specificity, but the idea can be adapted to other units of
encapsulation. In particular, the information flow analysis technique allows
to designate some unit smaller than a class, by labeling the relevant fields as
“secret”.

Related and future work. The most closely related work is that of Barnett
et al. (2004b, 2006), where a seemingly ad hoc condition combining Defini-
tions 4.2 and 5.3 was proposed. The original workshop presentation provoked
heated discussion, perhaps in part because the connection with established
ideas about benevolent effects was not at all clear so the theory seemed un-
motivated. Rather than drawing on the general theory of encapsulation and
simulation, the work focused on the noninterference property from informa-
tion security. In retrospect, our theory appears to be a natural adaptation of
old ideas about benevolent side effects together with a more modern treat-
ment of abstraction (He et al., 1986) and in particular the work of Banerjee
and Naumann (2005a) for heap encapsulation. Nonetheless it was tricky to
get the technical details to work: e.g., Lemma 5.5 does not seem obvious and
care is needed in orienting some definitions so that �β does not have to be
symmetric.

Leavens et al. (2003) discuss the rationale and static analysis for weak purity
in JML. Sălcianu and Rinard (2004) give a more precise static analysis for

5 David Cok and Gary Leavens, personal communication July 2005.

28

the weak purity condition. Verification conditions for weakly pure methods in
assertions have been investigated by Cok (2005) and by Darvas and Müller
(2006).

For proving the simulation property in specific cases like set
.
� set and

memoProd
.
� pureProd , one alternative is to use a specialized logic for rela-

tional properties, such as those of Benton (2004) and Yang (2004). The more
established alternative is the method of Reynolds (de Roever and Engelhardt,
1998) in which a relational property like M � N is reduced to an ordinary
correctness property. A renamed copy of the program variables is used so that
the state relation � can be treated as a predicate R on a “doubled state”. The
renamed copy N ′ of N acts on the renamed part of the state, so that M � N

is equivalent to the partial correctness property {R}M ; N ′ {R} which can be
proved using standard techniques. This method of proving relational properties
has recently been rediscovered in the special case where M = N (Barthe et al.,
2004; Terauchi and Aiken, 2005). The author has extended the technique to
apply to programs acting on heap objects, for which renaming is inadequate to
encode two states or two computations as one (Naumann, 2006). Ghost fields
are used to encode location bijections and by this technique simple cases like
memoProd

.
� pureProd can be proved automatically by verification tools like

ESC/Java2.

There has been considerable work refining and extending ownership encapsu-
lation to encompass a wide variety of design patterns in object oriented pro-
grams (Müller, 2002; Clarke and Drossopoulou, 2002; Boyapati et al., 2003;
Barnett et al., 2004a; Naumann and Barnett, 2006). Much of this work focuses
on object invariants but, for the most part, what works for invariants works
for simulations as demonstrated by Banerjee and Naumann (2005a,c).

To extend observational purity to total correctness, equivalence is replaced by
refinement of assert Q by skip. It should be possible to obtain a suitable sim-
ulation theory for Java-like languages by adapting existing work (Cavalcanti
and Naumann, 2002; Banerjee and Naumann, 2005a,c). We conjecture that
the extension to concurrency is also straightforward, given suitable control of
atomicity. Procedures called in assertions need to be deterministic in order to
apply logical reasoning, but our theory relies on determinacy only of Init in
the proof of Lemma 5.5 and perhaps even that is not necessary.

We leave open the question of completeness: if M is observationally pure
outside D then is it simulated by some stongly pure N ? Given such M , it is
straightforward to define a relation R such that R is weakly pure (semantically)
and suitably coupled with M . But the coupling needs to be a simulation for
all procedures of D and R needs to be denoted by a term in the language.

29

Acknowledgements Wolfram Schulte posed and named the problem of ob-
servational purity and suggested the connection with secure information flow.
Wolfram and Mike Barnett helped in preliminary attempts at devising a the-
ory and, together with Sun Qi, explored examples in the C# and Java libraries.
Gary Leavens, David Cok, Rustan Leino, and anonymous reviewers provided
helpful feedback and information.

References

Banerjee, A., Naumann, D. A., 2002. Representation independence, confine-
ment and access control. In: ACM Symposium on Principles of Programming
Languages (POPL). pp. 166–177.

Banerjee, A., Naumann, D. A., 2005a. Ownership confinement ensures repre-
sentation independence for object-oriented programs. Journal of the ACM
52 (6), 894–960, extended version of Banerjee and Naumann (2002).

Banerjee, A., Naumann, D. A., 2005b. Stack-based access control for secure in-
formation flow. Journal of Functional Programming 15 (2), 131–177, special
issue on Language Based Security.

Banerjee, A., Naumann, D. A., 2005c. State based ownership, reentrance, and
encapsulation. In: European Conference on Object-Oriented Programming
(ECOOP). pp. 387–411.

Barnett, M., DeLine, R., Fähndrich, M., Leino, K. R. M., Schulte, W., 2004a.
Verification of object-oriented programs with invariants. Journal of Object
Technology 3 (6), 27–56, special issue: ECOOP 2003 workshop on Formal
Techniques for Java-like Programs.

Barnett, M., Leino, K. R. M., Schulte, W., 2005. The Spec# programming
system: An overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.,
Muntean, T. (Eds.), Construction and Analysis of Safe, Secure, and Inter-
operable Smart Devices, International Workshop (CASSIS 2004), Revised
Selected Papers. Vol. 3362 of Springer LNCS. pp. 49–69.

Barnett, M., Naumann, D. A., Schulte, W., Sun, Q., 2004b. 99.44% pure:
Useful abstractions in specifications. In: ECOOP workshop on Formal Tech-
niques for Java-like Programs (FTfJP). Technical Report NIII-R0426, Uni-
versity of Nijmegen.

Barnett, M., Naumann, D. A., Schulte, W., Sun, Q., 2006. Allowing state
changes in specifications. In: International Conference on Emerging Trends
in Information and Communication Security (ETRICS). To appear. Ex-
tended version of Barnett et al. (2004b).

Barthe, G., D’Argenio, P. R., Rezk, T., 2004. Secure information flow by self-
composition. In: Proceedings of the 17th IEEE Computer Security Founda-
tions Workshop (CSFW’04). pp. 100–114

Benton, N., 2004. Simple relational correctness proofs for static analyses and
program transformations. In: ACM Symposium on Principles of Program-

30

ming Languages (POPL). pp. 14–25.
Boyapati, C., Liskov, B., Shrira, L., 2003. Ownership types for object encap-

sulation. In: ACM Symposium on Principles of Programming Languages
(POPL). pp. 213–223.

Calcagno, C., O’Hearn, P., Bornat, R., 2003. Program logic and equivalence in
the presence of garbage collection. Theoretical Computer Science 298 (3),
557–581.

Cavalcanti, A. L. C., Naumann, D. A., 2002. Forward simulation for data
refinement of classes. In: Eriksson, L., Lindsay, P. A. (Eds.), Formal Methods
Europe. Vol. 2391 of Springer LNCS. pp. 471–490.

Clarke, D., Drossopoulou, S., Nov. 2002. Ownership, encapsulation and the
disjointness of type and effect. In: Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). pp. 292–310.

Clarke, D. G., Noble, J., Potter, J. M., 2001. Simple ownership types for object
containment. In: Knudsen, J. L. (Ed.), ECOOP 2001 - Object Oriented
Programming. pp. 53–76.

Cok, D. R., 2005. Reasoning with specifications containing method calls and
model fields. Journal of Object Technology 4 (8), 77-103, special issue for
ECOOP 2004 Workshop FTfJP.

Darvas, A., Müller, P., 2006. Reasoning about method calls in interface speci-
fications. To appear in Journal of Object Technology 2006, special issue for
ECOOP 2005 Workshop FTfJP.

de Roever, W.-P., Engelhardt, K., 1998. Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge University Press.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., Stata,
R., 2002. Extended static checking for Java. In: ACM Conference on Pro-
gramming Language Design and Implementation (PLDI). pp. 234–245.

Guttag, J. V., Horning, J. J. (Eds.), 1993. Larch: Languages and Tools for For-
mal Specification. Texts and Monographs in Computer Science. Springer-
Verlag, with Stephen J. Garland, Kevin D. Jones, Andrés Modet, and Jean-
nette M. Wing.

He, J., Hoare, C. A. R., Sanders, J., 1986. Data refinement refined (resumé).
In: European Symposium on Programming. Vol. 213 of Springer LNCS.

Hoare, C. A. R., 1969. An axiomatic basis for computer programming. Com-
munications of the ACM 12, 576–80, 583.

Hoare, C. A. R., 1972. Proofs of correctness of data representations. Acta Inf.
1, 271–281.

Hogg, J., Lea, D., Wills, A., deChampeaux, D., Holt, R., 1992. The Geneva
Convention on the treatment of object aliasing. OOPS Messenger 3 (2),
11–16.

Leavens, G. T., Cheon, Y., Clifton, C., Ruby, C., Cok, D. R., 2003. How the
design of JML accommodates both runtime assertion checking and formal
verification. In: de Boer, F. S., Bonsangue, M. M., Graf, S., de Roever, W.-P.
(Eds.), Formal Methods for Components and Objects (FMCO 2002). Vol.
2852 of Springer LNCS. pp. 262–284.

31

Leino, K. R. M., Nelson, G., 2002. Data abstraction and information hiding.
ACM Trans. Prog. Lang. Syst. 24 (5), 491–553.

Liskov, B., Guttag, J., 1986. Abstraction and Specification in Program Devel-
opment. MIT Press.

Meyer, B., 1997. Object-oriented Software Construction, 2nd Edition. Prentice
Hall, New York.

Mitchell, J. C., 1996. Foundations for Programming Languages. MIT Press.
Müller, P., 2002. Modular Specification and Verification of Object-Oriented

Programs. Vol. 2262 of Springer LNCS.
Naumann, D. A., 2005. Observational purity and encapsulation. In: M. Cerioli

(Ed.), Fundamental Aspects of Software Engineering (FASE). Vol. 3442 of
Springer LNCS. pp. 190–204.

Naumann, D. A., 2006. From coupling relations to mated invariants for se-
cure information flow and data abstraction. In: European Symposium on
Research in Computer Security (ESORICS), to appear.

Naumann, D. A., Barnett, M., 2004. Towards imperative modules: Reasoning
about invariants and sharing of mutable state (extended abstract). In: IEEE
Symposium on Logic in Computer Science (LICS). pp. 313–323.

Naumann, D. A., Barnett, M., 2006. Towards imperative modules: Reason-
ing about invariants and sharing of mutable state. Theoretical Computer
Science. Extended version of Naumann and Barnett (2004), to appear.

Pierik, C., Clarke, D., de Boer, F. S., 2005. Controlling object allocation using
creation guards. In: Proceedings, Formal Methods. Vol. 3582 of Springer
LNCS. pp. 59–74.

Sabelfeld, A., Myers, A. C., Jan. 2003. Language-based information-flow se-
curity. IEEE J. Selected Areas in Communications 21 (1), 5–19.

Sălcianu, A., Rinard, M., May 2004. A combined pointer and purity analysis
for Java programs. Tech. Rep. MIT-CSAIL-TR-949, Department of Com-
puter Science, Massachusetts Institute of Technology.

Terauchi, T., Aiken, A., 2005. Secure information flow as a safety problem. In:
12th International Static Analysis Symposium (SAS). Vol. 3672 of Springer
LNCS. pp 352–367.

Yang, H., 2004. Relational separation logic. Theoretical Computer Science. To
appear.

A Proof of Proposition 3.4

For a precise proof some additional notions are needed. To formalize that
a procedure meaning, say −|p|→, preserves ∼ we define p ≈ p ′ in a way
analogous to Definition 3.3. Specifically, p ≈ p ′ just if (h, s) ∼β (h ′, s ′) and
h, s −|p|→ k , v and h ′, s ′ −|p ′|→ k ′, v ′ implies there is γ ⊇ β such that k ∼γ k ′

and v ∼γ v ′. Clearly p ≈ p ′ follows from the relation (body p) ≈ (body p ′) on

32

terms.

For any term M , define callees M to be the set of procedures (i.e., procedure
names) that occur in M . Similary for the callees of a term C[−] that may
have a hole. Define callees p to be callees(body p). By the assumption that the
calling graph is acyclic, there is an enumeration p0, . . . , pn of all procedures in
the program, such that callees pi ⊆ {p0, . . . , pi−1} for all i in 0 . . .n.

Proposition 3.4 is consequence of the following which strengthens it to provide
an induction hypothesis.

Lemma A.1 For all i in 0 . . .n:

(1) pi ≈ pi and
(2) if M ≈ N then C[M] ≈ C[N] for all contexts C[−] such that callees(C[−])∪

callees(C[−]) ⊆ {p0, . . . , pi}

To prove Lemma A.1 we need a “preservation lemma” for each term construct
other than procedure invocation. For constructs such as skip and new C that
do not have subterms, the preservation lemma simply equates the term with
itself: skip ≈ skip and new C ≈ new C . For a construct with a subterm,
such as x : = −, the preservation lemma is an implication like M ≈ N ⇒ x : =
M ≈ x : = N . In each case the preservation lemma can be proved easily by
unfolding the definition of ≈ and the semantic definition. We consider one case
as an example. Suppose M ≈ N . To show x : = M ≈ x : = N , one considers
related initial states; the semantics of x : = − first evaluates M and N , which
by hypothesis yields related states, including related values for the res variable.
The final states are obtained by assigning these values to x .

The proof of Lemma A.1 is by induction on i .

For the base case i = 0, the argument for item (1) of the Lemma, i.e., p0 ≈ p0,
is by induction on the structure of body p0, using the preservation lemmas. For
item (2), the argument is by induction on the structure of C[−]. For the case
of procedure invocation, (1) is used together with the semantics of invocation
(only p0 can be called); all other cases are handled using the preservation
lemmas.

For the induction step, the strong induction hypothesis is needed, in particular
pj ≈ pj for all j in 0 . . . i − 1. For (1)i , observe that pi ≈ pi follows from
body pi ≈ body pi which holds by induction hypothesis (2)i−1. This appeal to
the induction hypothesis uses that callees pi ⊆ {p0, . . . , pi−1} and hence we
can consider body pi to be a context (which does not happen to have a hole)
with callees in {p0, . . . , pi−1}. The argument for (2)i in the induction step is
the same as in the base case. In particular, for procedure invocation we use
that (2)i has callees(C[−])∪callees(C[−]) ⊆ {p0, . . . , pi} and (1)i gives pj � pj

33

for all j ∈ 0 . . . i . This corresponds to the informal appeal to the “induction
hypothesis about −|p|→” in the proof sketch following Proposition 3.4 in the
main body of the paper.

34

