A simple derivation.

Suppose we want to represent arbitrary-precision integers, namely integers that may be too large to be stored in any one machine word. (E.g., in Java, `java.util.BigDecimal` serves that purpose.) Let \(n \) be such integer. We can represent the binary expansion of \(n \) by splitting the sequence of bits into a sequence of words. For example, if we use 4-bit words (a.k.a. nibbles), and \(n = (20)_{10} = (10100)_{2} \), then we would need two words: \([0001], [0100] \). Thus, if the binary expansion of \(n \) contains \(k \) bits, and we use \(l \)-bit words, we must allocate \(\lceil k/l \rceil \) words. (In the previous example, \(k = 5 \), \(l = 4 \), and we required \(\lceil k/l \rceil = 2 \) words.) However, what if the binary expansion of \(n \) is not given, can we use some formula to compute the fewest number of bits \(n \) would require? The answer is affirmative. In the ensuing discussion, assume that \(n \) is any positive integer \(\geq 1 \), and \(b \) is any base \(\geq 2 \). Fortunately, mathematics can deal with infinitely large numbers allowing one to derive formulas that even hold for those \(n \) that would require the space of the whole universe to store them.

Let \(x \) be the fewest number of \(b \)-digits required to represent \(n \) in base \(b \). The largest number that can be represented with \(x \) digits is \(b^x - 1 \). Therefore, \(n \leq b^x - 1 \). Since \(x \) is the smallest, \(b^{x-1} \leq n \). (Otherwise, \(n < b^{x-1} \) which implies \(n \leq b^{x-1} - 1 \), and thus \(x - 1 \) suffices to represent \(n \).) Combining the two inequalities relating \(n \) and \(x \), we obtain

\[
b^{x-1} \leq n \leq b^x - 1
\]

Using the fact that \(n \leq b^x - 1 \) implies \(n < b^x \),

\[
b^{x-1} \leq n < b^x
\]

Since \(\log_b \) is a monotonic\(^1 \) function we can apply it to each side of the inequality

\[
\log_b b^{x-1} \leq \log_b n < \log_b b^x
\]

Using the fact that \(\log_b b^x = x \), for any \(b > 0 \), \(x > 0 \),

\[
x - 1 \leq \log_b n \leq x
\]

Since \(+1 \) is a monotonic function, we can apply it to each side,

\[
x \leq \log_b(n) + 1 < x + 1
\]

Now observe that the left and right sides of the inequality are integers whereas the middle is a real. Let \(x = [\log_b(n) + 1] \) and observe that it satisfies the following (where we replaced all occurrences of \(x \) in (1) with \([\log_b(n) + 1] \)),

\[
[\log_b(n) + 1] \leq \log_b(n) + 1 < [\log_b(n) + 1] + 1
\]

\(^1\)A function, \(f \), is monotonic iff for any \(x, y \) such that \(x \leq y \), \(f(x) \leq f(y) \).
where \(|y| \), for any real \(y \), is formally defined as \(|y| = \max\{n \in \mathbb{Z} \mid n \leq y\} \), and is called the floor function or the greatest integer less than or equal to \(y \). It is easily seen that

\[x = \lceil \log_b(n) + 1 \rceil = \lceil \log_b n \rceil + 1 \]

is a unique solution to (1).

To apply the formula to our example, let \(b = 2 \), \(n = 20 \) and recall that \(\log_b x = \log_{10} x / \log_{10} b \). Then, \(\lceil \log_2 20\rceil + 1 = \lceil 4.321\ldots \rceil + 1 = 5 \) is the fewest number of bits required to represent 20.