Data Structures

Sorting

CS284
Objectives

- To learn how to implement the following sorting algorithms:
 - selection sort
 - bubble sort
 - insertion sort
 - shell sort
 - merge sort
 - heapsort
 - quicksort

- To understand the differences in performance of these algorithms, and which to use for small, medium arrays, and large arrays
Shell Sort: A Better Insertion Sort
Shell Sort: A Better Insertion Sort

- Insertion sort takes $O(n^2)$ time
 - In the worst case, needs $O(n^2)$ comparisons/swaps
 - Disadvantage: swap distance can only be 1
 - Can we improve the time complexity if we allow long-distance swaps?

- Shell sort: long distance insertion sort

- History of shellsort:
 - It is named after its discoverer, Donald Shell
 - The time complexity depends on the actual distance being used
 - $O(n^{3/2})$ is a common bound for its time complexity
 - People have improved this bound over the years, by constructing different distance series
Disadvantage of Insertion Sort

1st round:
SORTEXAMPLE

......

6-th round:
EORSTXXAMPLE

......

- Each time can only swap by distance-1

```java
public void insertion_step(E[] a, int this_idx, int stride) {
    E this_val = a[this_idx];
    while (this_idx >= stride && this_val.compareTo(a[this_idx - stride]) < 0) {
        a[this_idx] = a[this_idx - stride];
        this_idx-= stride;
    }
    a[this_idx] = this_val;
}
```

- What if we can swap by longer distance?
Swap distance/stride h

<table>
<thead>
<tr>
<th>Stride</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>S O R T E X A M P L E</td>
</tr>
<tr>
<td>3</td>
<td>S O R T E X A M P L E S O R T E X A M P L E</td>
</tr>
</tbody>
</table>

7-sequence: S M O P R L T E E X A

3-sequence: S T A L O E M E R X P

Shell sort Algorithm

```java
public void shell_sort(E[] table) {
    int[] gap_seq = {5, 3, 1};
    for (int h : gap_seq) {
        for (int pos = 1; pos < table.length; pos++) {
            insertion_step(table, pos, h);
        }
    }
}
```

swap count = 17
Shell sort Algorithm

```java
public void shell_sort(E[] table) {
    int[] gap_seq = {5, 3, 1};
    for (int h : gap_seq) {
        for (int pos = 1; pos < table.length; pos++) {
            insertion_step(table, pos, h);
        }
    }
}
```

swap count = 17

```java
public void insertion_sort(E[] table) {
    for (int pos = 1; pos < table.length; pos++) {
        insertion_step(table, pos, 1);
    }
}
```

swap count = 36, how does Shell sort require fewer swaps while having more loops?
Shell sort: execution trace

stride = 7

SORTEXAMPLE
MORTEXASPLE
MORTEXASPLE
MOLTEXASPRE
MOREEXASPLT

stride = 3

3-seq #0 MOREEXASPLT
3-seq #0 EORMEXASPLT
3-seq #1 EORMEXASPLT
3-seq #2 EERMOXASPLT
3-seq #0 EERMOXASPLT
3-seq #0 EERMOXASPLT
3-seq #0 EERMOXASPLT
3-seq #0 (inserting A to E M)
3-seq #0 AEREOXMSPLT
3-seq #1 AEREOXMSPLT
3-seq #2 (inserting P to R X)
3-seq #2 AEPEORMSXLT
3-seq #0 AEPEORMSXLT
3-seq #1 AEPEORLSXMT
Analysis of Shell Sort

- Why is shell sort correct? When gap = 1, reduce to insertion sort
- How does Shell sort reduce # swaps and # comparisons?
 - Answer: the fact that the array is being 5-sorted and 3-sorted makes the algorithm require fewer swaps/comparisons in 1-sorting
- h-sort: the process of sorting all the h-sequence
Proposition. After an array is h-sorted then k sorted ($k < h$), the array remains h-sorted

Proof. We can prove the proposition by contradiction.

Suppose the proposition is false, that means after k sorting, at least one pair of stride-h elements are reversed, i.e., position i’s value $> \text{position } i + h$’s value. Suppose $(i, i + h)$ is the first time for this to happen.

Note & notation: The change happen due to the latest insertion operation in either x_i or x_{i+h}’s sequence, but not both. When it happens to one sequence \cdots, x_l, \cdots, we use $x_l|$ and $|x'_l$ to denote the before-after values of affected positions l. For any position k whose value is unchanged, we use x_k to denote its value.
Proposition

Before the k sorting, the array was h sorted, and now $(i, i + h)$ values are reversed. This means one of the following two things must have happened during the k sorting: (1) the latest position is at x_i’s sequence, and x_i just increased ($|x_i > x_i|$), or (2) the latest position is at x_{i+h}’s sequence, and x_{i+h}’s just decreased ($|x_{i+h} < x_{i+h}|$).

(1) Suppose it’s the first case. Notice in the process of k insertion sorting, any element can move at most $1 \times k$ position. Most of the time, the value at a position would decrease, the only case of increase is when x_i is the latest position, and it’s replaced by the value before it, e.g., $x_i | = A$ and $|x_i = M$:
Thus $|x_i = x_{i-k}|$, e.g., $|x_6 = x_3| = M$. Because $(i, i + h)$ is the first time for the reversion to happen, $x_{i-k} < x_{i-k+h}$; meanwhile, x_{i+h} and x_{i-k+h} are in the same k sequence, so when the k sort arrives at position $i + h$ later, x_{i+h} will be replaced by the largest value in this sequence, which $\geq x_{i-k+h} > x_{i-k} = |x_i|$, thus eventually the reversion will not happen, i.e., case (1) is eliminated.
Proposition

(2) Suppose it’s the second case. Due to insertion sort, when x_{i+h}’s value is decreased, it must be due to the insertion of the latest visited element x_{j+h} at its sequence, e.g., $x_6 = A$ is inserted upfront which makes the value of $x_0 = E$ and $x_3 = M$ decrease, thus $j > i$, and $x_{j+h} \leq |x_{i+h} < x_i$.

3-seq #0 E E R M O X A S P L T
(inserting A to E M)

3-seq #0 A E R E O X M S P L T
Meanwhile because the value at position $j + h$ has increased, it wouldn’t cause a reversion at position $(j, j + h)$ (unless x_j had increased even more, in which case the violation of $x_j > |x_{j+h} > x_{j+h}|$ means the reversion of case (1) would already happened as early as position j, which contradicts with the assumption that $(i, i + h)$ is the first time when the violation happens).

As a result, $x_j < x_{j+h} \leq |x_{i+h} < x_i$, but because $j > i$ and j has already been visited, x_i and x_j should have been sorted, so we have a contradiction, i.e., case (2) is eliminated.
Implication of proposition

- Proposition means, if we first 5 sort the array then 3 sort the array, the array will be both 3-sorted and 5-sorted.
- We can prove that, when an array is both 3 sorted and 5 sorted, #comparison/swap needed by the final 1 sorting is reduced to linear (o/w will be quadratic).
- This property is due to the fact that 3 and 5 are mutually prime numbers.
Complexity of 1-sorting a (3,5)-sorted array

Theorem. The \#swaps/comparison of 1 sorting an array that is both 3 sorted and 5 sorted is \(O(N)\).

Proof. After the 3 sorting, consider every 3 consecutive values \(x_{3i}, x_{3i+1}, x_{3i+2}\), and how many \#swap/comparison they need in total.

Because the array is 3 sorted, \(x_{3i} > x_{3i-3}, x_{3i-6}, \cdots\); meanwhile, because it is 5 sorted, \(x_{3i} > x_{3i-5}, x_{3i-8}, \cdots\), and \(x_{3i} > x_{3i-10} > x_{3i-13} \cdots\), so the only values that could be smaller than \(x_{3i}\) are: \(x_{3i-1}, x_{3i-2}, x_{3i-4}, x_{3i-7}\). Similarly, we can show there are also at most 4 values that are smaller than \(x_{3i+1}\) and \(x_{3i+2}\), thus the reversed \#pairs are at most \(O(N)\).
Complexity of l-sorting a \((h,k)\)-sorted array

Theorem (Sedgewick 1996). The \#swaps/comparison of \(l\)-sorting an array that is both \(h\) sorted and \(k\) sorted is \(O(hkN)\), where \(h\) and \(k\) are mutually prime numbers.

Proof. If \(h\) and \(k\) are mutually prime numbers where \(k < h\), we can prove the series of \(h\%k, 2h\%k, \ldots, (k - 1)h\%k\) must be \(k - 1\) unique values (proof: \(h = ak + c, ih\%k = ic\%k\), if \((i - j)c\%k = 0\), it means \(c\) is a factor of \(k\), contradicts with the fact that \(k\) and \(h\) are mutually prime).

So \(x_{ki}\) is only larger than at most \(h/k + 2h/k + \cdots, (k - 1)h/k = (k - 1)h/2\) numbers, thus at most \((k - 1)h/2l\) numbers in each \(l\)-sequence, so the total number of swaps/comparison is of complexity \(O(hkN/l)\).
Estimating the time complexity of Shell sort

Start from two large numbers h and k, the complexity of sorting are $(N/h)^2 + (N/k)^2$, followed by a list of linear complexity, e.g., the complexity for $(h, k, 1)$ sort is $O((N/h)^2 + (N/k)^2 + hkN)$, so when $h = k = N^{1/4}$, it will be $O(N^{3/2})$.

Tight bounds: the bound depends on the gap sequence. Over the years, people have proved tighter bounds such as $O(N^{4/3})$.
More readings

Sedgewick’s paper: http://thomas.baudel.name/Visualisation/VisuTri/Docs/shellsort.pdf